Home Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
Article
Licensed
Unlicensed Requires Authentication

Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion

  • Christian Rödl , Jennifer Bissmeyer neé Malberg and Robert Wolf EMAIL logo
Published/Copyright: October 18, 2018
Become an author with De Gruyter Brill

Abstract

We report the synthesis of functionalized 1,3-bis(diphosphacyclobutadiene) complexes via the insertion of carbon-oxygen bonds of ethers, esters, aldehydes and amides into the P–Si bond of silylated complexes. Reactions of [K(tol)2][Co(η4-P2C2R2)2] [[K(tol)2][1a]: R=tBu, [K(tol)2][1b]: R=tPent (=tert-pentyl)] with Me3SiCl afford the trimethylsilyl-substituted derivatives [Co(η4-P2C2R2SiMe3)(η4-P2C2R2)] (2a,b, R=tBu, tPent). The Me3Si group is connected to a phosphorus atom of one of the 1,3-diphosphacyclobutadiene ligands. 2a,b readily react with organic substrates containing C–O single and C=O double bonds at ambient temperature. [Co(η4-P2C2R2(CH2)4OSiMe3)(η4-P2C2R2)] (3a, b) are formed by reaction of 2a, b with traces of THF. They can also be isolated by reacting the THF solvates [K(thf)2{Co(P2C2tBu2)2}] ([K(thf)2][1a]) and [K(thf)3{Co(P2C2tPent2)2}] ([K(thf)3][1b]) with Me3SiCl in toluene or THF. The adamantyl-substituted complex [Co(η4-P2C2Ad2(CH2)4OSiMe3)(η4-P2C2Ad2)] (3c) was prepared analogously from [K(thf)4{Co(P2C2Ad2)2}] and Me3SiCl. [K(thf)2][1a] reacts cleanly with Ph3SnCl affording [Co(η4-P2C2tBu2SnPh3)(η4-P2C2tBu2)] (4) in high yield. Reaction of 2a with styrene oxide affords [Co(η4-P2C2tBu2PhC2H3OSiMe3)(η4-P2C2tBu2)] (5) as a single regioisomer. By contrast, multinuclear NMR spectroscopic studies indicate mixtures of two isomeric insertion products 6/6′ and 7/7′, respectively, which result from the insertion of 1,2-epoxy-2-methylpropane and 1,2-epoxyoctane. Moreover, these monitoring studies show that reactions of 2a with acyclic ethers afford alkyl substituted complexes such as [Co(η4-P2C2tBu2Et)(η4-P2C2tBu2)] (8) and alkylsilyl ethers. Reaction of 2a with γ-butyrolactone gives [Co(η4-P2C2tBu2(CH2)3C(O)OSiMe3)(η4-P2C2tBu2)] (9) via cleavage of the endocyclic C–O single bond of the lactone. Benzaldehyde and acetone cleanly react with 2a to [Co(η4-P2C2tBu2CH(Ph)OSiMe3)(η4-P2C2tBu2)] (10) and [Co(η4-P2C2tBu2CMe2OSiMe3)(η4-P2C2tBu2)] (11), while the sterically more demanding ketones 3-pentanone and acetophenone selectively yield the known hydride complex [Co(η4-P2C2tBu2)2H] (A). Phenyl isocyanate reacts with 2a at elevated temperature to form [Co(η3-P2C2tBu2CON(Ph)SiMe3)(η4-P2C2tBu2)] (12) with a functionalized η3-coordinated ligand. [K(tol)2][1a], [K(tol)2][1b], 2a, 2b, 3a–c, 4, 5, and 9–12 were isolated and characterized by multinuclear NMR spectroscopy, UV/Vis spectroscopy and elemental analysis. [K(tol)2][1b], 2a, 2b, 3c, 4, 5, and 9–12 were additionally characterized by X-ray crystallography.


Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.


Acknowledgements

We gratefully acknowledge Universität Regensburg (UR) for funding and the NMR department of UR’s central analytical facility for expert support. R. W. is grateful to Professor Werner Uhl for his guidance and support at a crucial stage of his career.

References

[1] G. Becker, G. Gresser, W. Uhl, Z. Naturforsch. B1981, 36, 16.10.1515/znb-1981-0105Search in Google Scholar

[2] K. B. Dillon, F. Mathey, J. F. Nixon, Phosphorus: The Carbon Copy, Wiley, Chichester, 1998.Search in Google Scholar

[3] A. Chirila, R. Wolf, J. C. Slootweg, K. Lammertsma, Coord. Chem. Rev.2014, 270–271, 57.10.1016/j.ccr.2013.10.005Search in Google Scholar

[4] F. Mathey, Angew. Chem. Int. Ed.2003, 42, 1578.10.1002/anie.200200557Search in Google Scholar

[5] M. Regitz, Chem. Rev.1990, 90, 191–213.10.1021/cr00099a007Search in Google Scholar

[6] M. Regitz, P. Binger, Angew. Chem. Int. Ed. Engl.1988, 27, 1484.10.1002/anie.198814841Search in Google Scholar

[7] J. F. Nixon, Chem. Rev.1988, 88, 1327.10.1021/cr00089a015Search in Google Scholar

[8] P. Binger, G. Glaser, S. Albus, C. Krüger, Chem. Ber.1995, 128, 1261.10.1002/cber.19951281219Search in Google Scholar

[9] F. W. Heinemann, S. Kummer, U. Seiss-Brandl, U. Zenneck, Organometallics1999, 18, 2021.10.1021/om980862xSearch in Google Scholar

[10] P. Kramkowski, M. Scheer, Eur. J. Inorg. Chem.2000, 2000, 1869.10.1002/1099-0682(200008)2000:8<1869::AID-EJIC1869>3.0.CO;2-ASearch in Google Scholar

[11] C. Jones, C. Schulten, A. Stasch, Dalton Trans.2006, 3733.10.1039/B607489HSearch in Google Scholar

[12] E.-M. Rummel, G. Balazs, V. Heinl, M. Scheer, Angew. Chem. Int. Ed.2017, 56, 9592.10.1002/anie.201703633Search in Google Scholar

[13] P. Binger, R. Milczarek, R. Mynott, M. Regitz, W. Rösch, Angew. Chem. Int. Ed. Engl.1986, 25, 644.10.1002/anie.198606441Search in Google Scholar

[14] P. B. Hitchcock, M. J. Maah, J. F. Nixon, J. Chem. Soc., Chem. Commun.1986, 737.10.1039/C39860000737Search in Google Scholar

[15] P. Binger, R. Milczarek, R. Mynott, C. Krüger, Y. H. Tsay, E. Raabe, M. Regitz, Chem. Ber.1988, 121, 637.10.1002/cber.19881210409Search in Google Scholar

[16] P. Binger, B. Biedenbach, R. Schneider, M. Regitz, Synthesis1989, 12, 960.10.1055/s-1989-27447Search in Google Scholar

[17] Analogous rhodium(I) and iridium(I) compounds [CpM(η4-P2C2tBu2)] (M=Rh, Ir) and coordination compounds of [CpCo(η4-P2C2tBu2)]: P. B. Hitchcock, M. J. Maah, J. F. Nixon, Heteroatom. Chem.1991, 2, 253.10.1002/hc.520020207Search in Google Scholar

[18] A. G. Avent, F. G. N. Cloke, K. R. Flower, P. B. Hitchcock, J. F. Nixon, D. M. Vickers, Angew. Chem., Int. Ed. Engl.1994, 33, 2330.10.1002/anie.199423301Search in Google Scholar

[19] D. Böhm, F. Knoch, S. Kummer, U. Schmidt, U. Zenneck, Angew. Chem., Int. Ed. Engl.1995, 34, 198.10.1002/anie.199501981Search in Google Scholar

[20] P. A. Arnold, F. G. N. Cloke, P. B. Hitchcock, J. F. Nixon, J. Am. Chem. Soc.1996, 118, 7630.10.1021/ja961253oSearch in Google Scholar

[21] M. Scheer, J. Krug, Z. Anorg. Allg. Chem.1998, 624, 399.10.1002/(SICI)1521-3749(199803)624:3<399::AID-ZAAC399>3.0.CO;2-7Search in Google Scholar

[22] F. G. N. Cloke, P. B. Hitchcock, J. F. Nixon, D. M. Vickers, J. Organomet. Chem.2001, 635, 212.10.1016/S0022-328X(01)01110-XSearch in Google Scholar

[23] A. D. Burrows, A. Dransfeld, M. Green, J. C. Jeffery, C. Jones, J. M. Lyman, M. T. Nguyen, Angew. Chem. Int. Ed.2001, 40, 3221.10.1002/1521-3773(20010903)40:17<3221::AID-ANIE3221>3.0.CO;2-VSearch in Google Scholar

[24] C. Topf, T. Clark, F. W. Heinemann, M. Hennemann, S. Kummer, H. Pritzkow, U. Zenneck, Angew. Chem. Int. Ed.2002, 41, 4047.10.1002/1521-3773(20021104)41:21<4047::AID-ANIE4047>3.0.CO;2-4Search in Google Scholar

[25] D. Himmel, M. Seitz, M. Scheer, Z. Anorg. Allg. Chem.2004, 630, 1220.10.1002/zaac.200400068Search in Google Scholar

[26] E.-M. Rummel, M. Eckhardt, M. Bodensteiner, E.V. Peresypkina, W. Kremer, C. Gröger, M. Scheer, Eur. J. Inorg. Chem.2014, 2014, 1625.10.1002/ejic.201301299Search in Google Scholar

[27] R. Wolf, A. W. Ehlers, J. C. Slootweg, M. Lutz, D. Gudat, M. Hunger, A. L. Spek, K. Lammertsma, Angew. Chem. Int. Ed.2008, 47, 4584.10.1002/anie.200800813Search in Google Scholar

[28] R. Wolf, J. C. Slootweg, A. W. Ehlers, F. Hartl, B. de Bruin, M. Lutz, A. L. Spek, K. Lammertsma, Angew. Chem. Int. Ed.2009, 48, 3104.10.1002/anie.200805193Search in Google Scholar

[29] R. Wolf, A. W. Ehlers, M. M. Khusniyarov, F. Hartl, B. de Bruin, G. J. Long, F. Grandjean, F. M. Schappacher, R. Pöttgen, J. C. Slootweg, M. Lutz, A. L. Spek, K. Lammertsma, Chem. Eur. J.2010, 16, 14322.10.1002/chem.201001913Search in Google Scholar

[30] Electrochemical measurements and preparative studies have shown that 1a is readily oxidized to neutral [Co(η4-P2C2tBu2)2]. A half-wave potential of E1/2=–0.73 V vs. Fc/Fc+ was determined for 1a by cyclic voltammetry, see ref. [29].Search in Google Scholar

[31] J. Malberg, M. Bodensteiner, D. Paul, T. Wiegand, H. Eckert, R. Wolf, Angew. Chem. Int. Ed.2014, 53, 2771.10.1002/anie.201309493Search in Google Scholar

[32] J. Malberg, T. Wiegand, H. Eckert, M. Bodensteiner, R. Wolf, Eur. J. Inorg. Chem.2014, 2014, 1638.10.1002/ejic.201301173Search in Google Scholar

[33] J. Malberg, T. Wiegand, H. Eckert, M. Bodensteiner, R. Wolf, Chem. Eur. J.2013, 19, 2356.10.1002/chem.201203606Search in Google Scholar

[34] P. Pyykkö, J. Phys. Chem. A.2015, 119, 2326.10.1021/jp5065819Search in Google Scholar

[35] Example for the insertion of tetrahydrofuran into a P−Si bond: H. G. Horn, H. J. Lindner, Chem.-Ztg.1988, 112, 195.Search in Google Scholar

[36] E. V. Ivanova, H. M. Muchall, J. Phys. Chem. A.2007, 111, 10824.10.1021/jp075210dSearch in Google Scholar

[37] G. W. Chantry, E. A. Nicol, D. J. Harrison, Spectrochim. Acta A1974, 80, 1717.10.1016/0584-8539(74)80122-4Search in Google Scholar

[38] K. Itoh, M. Fukui, Y. Ishii, J. Chem. Soc. C1969, 2002.10.1039/j39690002002Search in Google Scholar

[39] C. Rödl, R. Wolf, Eur. J. Inorg. Chem.2016, 2016, 736.10.1002/ejic.201500583Search in Google Scholar

[40] SCALE3ABS, CrysAlisPro , Agilent Technologies Ltd., Yarnton, Oxfordshire (U.K.) 2012.Search in Google Scholar

[41] G. M. Sheldrick, Sadabs, Bruker AXS Inc., Madison, Wisconsin (USA) 2007.Search in Google Scholar

[42] R. C. Clark, J. S. Reid, Acta Crystallogr.1995, A51, 887.10.1107/S0108767395007367Search in Google Scholar

[43] M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, J. Appl. Crystallogr.2007, 40, 609.10.1107/S0021889807010941Search in Google Scholar

[44] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[45] G. M. Sheldrick, Acta Crystallogr.2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar

[46] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0121).


Received: 2018-06-17
Accepted: 2018-08-14
Published Online: 2018-10-18
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0121/html
Scroll to top button