Abstract
The crystal structure of struvite-type KMgAsO4(H2O)6 has been redetermined from single crystal X-ray diffraction data at room temperature. The previous structure model based on powder X-ray diffraction data was confirmed with higher precision and accuracy and with all hydrogen atoms located. KMgAsO4(H2O)6 undergoes a reversible phase transition of the continuous type at 263(2) K, changing the symmetry from orthorhombic to monoclinic. The corresponding Pnm21→P1121 symmetry reduction is of a translationengleiche type with index 2 and was monitored by temperature-dependent powder X-ray diffraction measurements. Such a phase transition is unprecedented for struvite-type compounds. The crystal structure of the monoclinic polymorph was determined from a two-domain crystal at 100 K. Except for the motion of one of the water molecules towards stronger hydrogen-bonding interactions, structural changes between the two polymorphs are small.
Dedicated to: Professor Wolfgang Bensch on the occasion of his 65th birthday.
Acknowledgment
The X-ray Centre of TU Wien is acknowledged for providing access to the X-ray diffractometers.
References
[1] M. Luján, F. Kubel, H. Schmid, Z. Naturforsch.1995, 50b, 1210.10.1515/znb-1995-0815Search in Google Scholar
[2] M. Luján, J.-P. Rivera, H. Schmid, Ferroelectrics2011, 162, 69.10.1080/00150199408245092Search in Google Scholar
[3] P. Fischer, M. Luján, F. Kubel, H. Schmid, Ferroelectrics1994, 62, 37.10.1080/00150199408245088Search in Google Scholar
[4] S. T. Bramwell, A. M. Buckley, P. Day, J. Solid State Chem.1994, 111, 48.10.1006/jssc.1994.1197Search in Google Scholar
[5] S. Zhang, Y. Huang, H. Jin Seo, Opt. Mater.2010, 32, 1545.10.1016/j.optmat.2010.06.020Search in Google Scholar
[6] C. B. Palan, N. S. Bajaj, A. Soni, S. K. Omanwar, J. Lumin.2016, 176, 106.10.1016/j.jlumin.2016.03.014Search in Google Scholar
[7] Z. Abdija, M. Najdoski, V. Koleva, T. Runčevski, R. E. Dinnebier, B. Šoptrajanov, V. Stefov, Z. Anorg. Allg. Chem.2014, 640, 3177.10.1002/zaac.201400265Search in Google Scholar
[8] Apex-2, Saint and Twinabs, Bruker AXS Inc., Madison, Wisconsin (USA) 2015.Search in Google Scholar
[9] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr.2015, 48, 3.10.1107/S1600576714022985Search in Google Scholar PubMed PubMed Central
[10] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar
[11] M. Mathew, L. W. Schroeder, Acta Crystallogr.1979, B35, 11.10.1107/S0567740879002429Search in Google Scholar
[12] H. D. Flack, Acta Crystallogr.1983, A39, 876.10.1107/S0108767383001762Search in Google Scholar
[13] E. Kroumova, J. M. Perez-Mato, M. I. Aroyo, J. Appl. Crystallogr.1998, 31, 646.10.1107/S0021889898005524Search in Google Scholar
[14] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Z. Kristallogr.2006, 221, 15.10.1524/zkri.2006.221.1.15Search in Google Scholar
[15] Topas (version 4.2), Bruker AXS GmbH, Karlsruhe (Germany) 2009.Search in Google Scholar
[16] E. Banks, R. Chianelli, R. Korenstein, Inorg. Chem.1975, 14, 1634.10.1021/ic50149a041Search in Google Scholar
[17] M. Weil, Cryst. Res. Technol.2008, 43,1286.10.1002/crat.200800403Search in Google Scholar
[18] M. Weil, Acta Crystallogr.2008, E64, i50.10.1107/S1600536808023283Search in Google Scholar
[19] M. Weil, Acta Crystallogr.2009, E65, i2.10.1107/S1600536809018108Search in Google Scholar
[20] A. Whitaker, J. W. Jeffery, Acta Crystallogr.1970, B26, 1429.10.1107/S0567740870004284Search in Google Scholar
[21] A. Whitaker, J. W. Jeffery, Acta Crystallogr.1970, B26, 1440.10.1107/S0567740870004296Search in Google Scholar
[22] G. Ferraris, M. Franchini-Angela, Acta Crystallogr.1973, B29, 859.10.1107/S0567740873003456Search in Google Scholar
[23] S. Graeser, W. Postl, H. P. Bojar, P. Berlepsch, T. Armbruster, T. Raber, K. Ettinger, F. Walter, Eur. J. Mineral.2008, 20, 629.10.1127/0935-1221/2008/0020-1810Search in Google Scholar
[24] G. V. Kiriukhina, O. V. Yakubovich, E. M. Kochetkova, O. V. Dimitrova, A. S. Volkov, Acta Crystallogr.2018, C74, 936.10.1107/S2053229618009798Search in Google Scholar
[25] U. Müller, Symmetry relationships between crystal structures, Oxford University Press, Oxford 2013.10.1093/acprof:oso/9780199669950.001.0001Search in Google Scholar
[26] H. Bärnighausen, MATCH, Commun. Math. Chem.1980, 9, 139.Search in Google Scholar
[27] I. D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, Oxford 2002.Search in Google Scholar
[28] I. D. Brown, D. Altermatt, Acta Crystallogr.1985, B41, 244.10.1107/S0108768185002063Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
- Orthorhombic sulfur from Cap Garonne, Mine du Pradet
- An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
- ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
- Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
- Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
- Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
- Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
- The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
- Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
- Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
- CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
- Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
- Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X− (X = Cl, Br, I)
- Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
- Modulated vacancy ordering in SrGe6−x (x≈0.45)
- Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
- Orthorhombic sulfur from Cap Garonne, Mine du Pradet
- An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
- ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
- Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
- Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
- Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
- Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
- The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
- Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
- Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
- CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
- Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
- Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X− (X = Cl, Br, I)
- Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
- Modulated vacancy ordering in SrGe6−x (x≈0.45)
- Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis