Home The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
Article
Licensed
Unlicensed Requires Authentication

The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)

  • Simon Engelbert , Dirk Niepmann , Theresa Block , Lukas Heletta and Rainer Pöttgen EMAIL logo
Published/Copyright: July 4, 2018
Become an author with De Gruyter Brill

Abstract

The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm) were synthesized from the elements by arc melting or by induction melting in sealed niobium containers. They crystallize with the NdRh2Sn4 type structure, space group Pnma. The samples were characterized by powder X-ray diffraction (Guinier technique). Three structures were refined from single-crystal X-ray data: a=1844.5(2), b=450.33(4), c=716.90(6) pm, wR2=0.0323, 1172 F2 values, 44 variables for LaIr2Sn4, a=1840.08(2), b=448.24(4), c=719.6(1) pm, wR2=0.0215, 1265 F2 values, 45 variables for Ce1.13Ir2Sn3.87, and a=1880.7(1), b=446.2(1), c=733.0(1) pm, wR2=0.0845, 836 F2 values, 45 variables for Ce1.68Ir2Sn3.32. The structures consist of three-dimensional [Ir2Sn4] polyanionic networks in which the rare earth atoms fill pentagonal prismatic channels. The striking structural motif concerns the formation of solid solutions RE1+xIr2Sn4−x on the Sn4 sites, which have similar coordination as the RE sites. Temperature dependent magnetic susceptibility measurements revealed diamagnetic behavior for LaIr2Sn4. CeIr2Sn4, PrIr2Sn4 and NdIr2Sn4 show Curie-Weiss paramagnetism while SmIr2Sn4 exhibits typical van Vleck paramagnetism. Antiferromagnetic ground states were observed for CeIr2Sn4 (TN=3.3 K) and SmIr2Sn4 (TN=3.8 K). 119Sn Mössbauer spectra show a close superposition of four sub-spectra which can be distinguished through their isomer shift and the quadrupole splitting parameter.


Dedicated to:

Professor Werner Uhl on the occasion of his 65th birthday.


Acknowledgements

We thank Dr. Rolf-Dieter Hoffmann, Dipl.-Ing. U. Ch. Rodewald and Dipl.-Ing. Jutta Kösters for collecting the single-crystal intensity data.

References

[1] R. V. Skolozdra, Stannides of the rare-earth and transition metals, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 24 (Eds.: K. A. Gschneidner, Jr., L. Eyring), Elsevier, Amsterdam, 1997, chapter 164.10.1016/S0168-1273(97)24009-2Search in Google Scholar

[2] R. Pöttgen, Z. Naturforsch. 2006, 61b, 677.10.1515/znb-2006-0607Search in Google Scholar

[3] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Search in Google Scholar

[4] A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics, CRC Press, Boca Raton, Florida, 1994.Search in Google Scholar

[5] R. Pöttgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289.10.1515/znb-2015-0018Search in Google Scholar

[6] R. Pöttgen, O. Janka, B. Chevalier, Z. Naturforsch. 2016, 71b, 165.10.1515/znb-2016-0013Search in Google Scholar

[7] O. Janka, O. Niehaus, R. Pöttgen, B. Chevalier, Z. Naturforsch. 2016, 71b, 737.10.1515/znb-2016-0101Search in Google Scholar

[8] O. Niehaus, G. Heymann, H. Huppertz, U. Ch. Rodewald, B. Chevalier, S. F. Matar, R.-D. Hoffmann, R. Pöttgen, Dalton Trans. 2016, 45, 14216.10.1039/C6DT02294DSearch in Google Scholar

[9] D. Laffargue, F. Bourée, B. Chevalier, J. Etourneau, T. Roisnel, Physica B1999, 259–261, 46.10.1016/S0921-4526(98)00734-0Search in Google Scholar

[10] R. Pöttgen, R.-D. Hoffmann, E. V. Sampathkumaran, I. Das, B. D. Mosel, R. Müllmann, J. Solid State Chem. 1997, 134, 326.10.1006/jssc.1997.7565Search in Google Scholar

[11] M. Sundermann, F. Strigari, T. Willers, H. Winkler, A. Prokofiev, J. M. Ablett, J.-P. Rueff, D. Schmitz, E. Weschke, M. Moretti Sala, A. Al-Zein, A. Tanaka, M. W. Haverkort, D. Kasinathan, L. H. Tjeng, S. Paschen, A. Severing, Sci. Rep. 2015, 5, 17937.10.1038/srep17937Search in Google Scholar PubMed PubMed Central

[12] E. L. Thomas, H.-O. Lee, A. N. Bankston, S. MaQuilon, P. Klavins, M. Moldovan, D. P. Young, Z. Fisk, J. Y. Chan, J. Solid State Chem. 2006, 179, 1642.10.1016/j.jssc.2006.02.024Search in Google Scholar

[13] A. Ślebarski, J. Goraus, Phys. Rev. B2013, 88, 155122.10.1103/PhysRevB.88.155122Search in Google Scholar

[14] C. N. Kuo, W. T. Chen, C. W. Tseng, C. J. Hsu, R. Y. Huang, F. C. Chou, Y. K. Kuo, C. S. Lue, Phys. Rev. B2018, 97, 094101.10.1103/PhysRevB.97.094101Search in Google Scholar

[15] P. Salamakha, O. Sologub, J. K. Yakinthos, Ch. D. Routsi, J. Alloys Compd. 1998, 265, L1.10.1016/S0925-8388(97)00427-1Search in Google Scholar

[16] B. Chevalier, C. P. Sebastian, R. Pöttgen, Solid State Sci. 2006, 8, 1000.10.1016/j.solidstatesciences.2006.02.047Search in Google Scholar

[17] M. Selsane, M. Lebail, N. Hamdaoui, J. P. Kappler, H. Noël, J. C. Achard, C. Godart, Physica B1990, 163, 213.10.1016/0921-4526(90)90171-PSearch in Google Scholar

[18] W. P. Beyermann, M. F. Hundley, P. C. Canfield, J. D. Thompson, M. Latroche, C. Godart, M. Selsane, Z. Fisk, J. L. Smith, Phys. Rev. B1991, 43, 13130.10.1103/PhysRevB.43.13130Search in Google Scholar

[19] G. Venturini, B. Malaman, B. Roques, Mater. Res. Bull. 1989, 24, 1135.10.1016/0025-5408(89)90071-8Search in Google Scholar

[20] N. G. Patil, S. Ramakrishnan, Phys. Rev. B1997, 56, 3360.10.1103/PhysRevB.56.3360Search in Google Scholar

[21] S. Ramakrishnan, Curr. Sci. 2005, 88, 96.10.1002/bip.20241Search in Google Scholar

[22] A. S. Cooper, Mater. Res. Bull. 1980, 15, 799.10.1016/0025-5408(80)90014-8Search in Google Scholar

[23] D. Niepmann, R. Pöttgen, K. M. Poduska, F. J. DiSalvo, H. Trill, B. D. Mosel, Z. Naturforsch. 2001, 56b, 1.10.1515/znb-2001-0102Search in Google Scholar

[24] C. Nagoshi, H. Sugawara, Y. Aoki, S. Sakai, M. Kohgi, H. Sato, T. Onimaru, T. Sakakibara, Physica B2005, 359–361, 248.10.1016/j.physb.2005.01.052Search in Google Scholar

[25] C. P. Yang, Y. H. Chen, H. Wang, C. Nagoshi, M. Kohgi, H. Sato, Appl. Phys. Lett. 2008, 92, 092504.10.1063/1.2890716Search in Google Scholar

[26] J. R. Collave, H. A. Borges, S. M. Ramos, E. N. Hering, M. B. Fontes, E. Baggio-Saitovitch, A. Eichler, E. M. Bittar, P. G. Pagliuso, Solid State Commun. 2014, 177, 132.10.1016/j.ssc.2013.10.015Search in Google Scholar

[27] D. Niepmann, R. Pöttgen, B. Künnen, G. Kotzyba, C. Rosenhahn, B. D. Mosel, Chem. Mater. 1999, 11, 1597.10.1021/cm991006uSearch in Google Scholar

[28] D. Niepmann, Struktur-Eigenschaftsbeziehungen ternärer intermetallischer Cer-Übergangsmetall-Silicide, Germanide und Stannide, Dissertation, Universität Münster, Münster, 2000.Search in Google Scholar

[29] M. Méot-Meyer, G. Venturini, B. Malaman, B. Roques, Mater. Res. Bull. 1985, 20, 913.10.1016/0025-5408(85)90074-1Search in Google Scholar

[30] R. Pöttgen, T. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Search in Google Scholar

[31] D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem.1998, 624, 1727.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar

[32] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Search in Google Scholar

[33] R. A. Brand, Normos, Mössbauer Fitting Program, University of Duisburg, Duisburg (Germany) 2002.Search in Google Scholar

[34] G. M. Sheldrick, Acta Crystallogr.1990, A46, 467.10.1107/S0108767390000277Search in Google Scholar

[35] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar

[36] M. Gamża, W. Schnelle, R. Gumeniuk, Yu. Prots, A. Ślebarski, H. Rosner, Yu. Grin, J. Phys.: Condens. Matter2009, 21, 325601.10.1088/0953-8984/21/32/325601Search in Google Scholar

[37] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

[38] V. Smetana, G. J. Miller, J. D. Corbett, Inorg. Chem. 2013, 52, 12502.10.1021/ic401580ySearch in Google Scholar

[39] S. N. Nesterenko, A. I. Tursina, A. V. Gribanov, Y. D. Seropegin, J. M. Kurenbaeva, J. Alloys Compd. 2004, 383, 242.10.1016/j.jallcom.2004.04.026Search in Google Scholar

[40] J. R. Salvador, K. Hoang, S. D. Mahanti, M. G. Kanatzidis, Inorg. Chem. 2007, 46, 6933.10.1021/ic700633bSearch in Google Scholar

[41] S. Sarkar, M. J. Gutmann, S. C. Peter, Cryst. Growth Des. 2013, 13, 4285.10.1021/cg400619pSearch in Google Scholar

[42] D. Voßwinkel, S. F. Matar, R. Pöttgen, Monatsh. Chem. 2015, 146, 1375.10.1007/s00706-015-1525-5Search in Google Scholar

[43] R. Pöttgen, D. Johrendt, Intermetallics, De Gruyter, Berlin, 2014.10.1524/9783486856187Search in Google Scholar

[44] J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Search in Google Scholar

[45] R.-D. Hoffmann, D. Kußmann, U. Ch. Rodewald, R. Pöttgen, C. Rosenhahn, B. D. Mosel, Z. Naturforsch. 1999, 54b, 709.10.1515/znb-1999-0602Search in Google Scholar

[46] Zh. Wu, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 2002, 628, 1484.10.1002/1521-3749(200207)628:7<1484::AID-ZAAC1484>3.0.CO;2-#Search in Google Scholar

[47] J. Donohue, The Structures of the Elements, Wiley, New York, 1974.Search in Google Scholar

[48] I. Todorov, S. C. Sevov, Inorg. Chem. 2005, 44, 5361.10.1021/ic050803tSearch in Google Scholar

[49] H. Lueken, Magnetochemie, Teubner, Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

[50] R. Pöttgen, H. Borrmann, R. K. Kremer, J. Magn. Magn. Mater. 1996, 152, 196.10.1016/0304-8853(95)00430-0Search in Google Scholar

[51] J. H. van Vleck, Theory of Electric and Magnetic Susceptibilities, Clarendon Press, Oxford, 1932.Search in Google Scholar

[52] A. M. Stewart, Phys. Rev. B1972, 6, 1985.10.1103/PhysRevB.6.1985Search in Google Scholar

[53] H. C. Hamaker, L. D. Woolf, H. B. MacKay, Z. Fisk, M. B. Maple, Solid State Commun.1979, 32, 289.10.1016/0038-1098(79)90949-9Search in Google Scholar

[54] A. M. Stewart, Phys. Rev. B1993, 47, 11242.10.1103/PhysRevB.47.11242Search in Google Scholar

[55] S. Seidel, O. Niehaus, S. F. Matar, O. Janka, B. Gerke, U. C. Rodewald, R. Pöttgen, Z. Naturforsch.2014, 69b, 1105.10.5560/znb.2014-4119Search in Google Scholar

[56] B. Heying, J. Kösters, R.-D. Hoffmann, L. Heletta, R. Pöttgen, Z. Naturforsch. 2017, 72b, 753.10.1515/znb-2017-0127Search in Google Scholar

[57] P. E. Lippens, Phys. Rev. B1999, 60, 4576.10.1103/PhysRevB.60.4576Search in Google Scholar

Received: 2018-06-05
Accepted: 2018-06-23
Published Online: 2018-07-04
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0115/html?lang=en
Scroll to top button