Abstract
A new tin(II) borate with the composition SnB8O11(OH)4 was synthesized by a simple hydrothermal process. It crystallizes in the centrosymmetric monoclinic space group P21/n (no. 14) with the lattice parameters a=790.1(1), b=1402.2(2), c=994.8(1) pm, and β=90.40(5)° (Z=4). The new compound SnB8O11(OH)4 is isotypic to PbB8O11(OH)4 and isostructural to BaB8O11(OH)4. The borate layers are built up from fundamental building blocks (FBBs) with the composition [B8O11(OH)4]2−. Four of these FBBs form a nine-membered ring wherein the Sn2+ cations are located. These boron-oxygen layers are further connected by O–H···O hydrogen bond interactions. The characterization of SnB8O11(OH)4 is based on single-crystal X-ray diffraction data, vibrational spectroscopy, DFT calculations, and thermoanalytical investigations including high temperature powder XRD.
Acknowledgement
We are very thankful to the Institute for Construction and Materials Science at the University of Innsbruck for granting us access to the devices for the thermoanalytical measurements.
References
[1] J. S. Knyrim, F. M. Schappacher, R. Pöttgen, J. Schmedt auf der Günne, D. Johrendt, H. Huppertz, Chem. Mater.2007, 19, 254.10.1021/cm061946wSuche in Google Scholar
[2] A. Hayashi, M. Nakai, M. Tatsumisago, T. Minami, Y. Himei, Y. Miura, M. Katada, J. Non-Cryst. Solids2002, 306, 227.10.1016/S0022-3093(02)01169-9Suche in Google Scholar
[3] C. Gejke, E. Nordstrom, L. Fransson, K. Edstrom, L. Haggstrom, L. Borjesson, J. Mater. Chem.2002, 12, 2965.10.1039/B203469GSuche in Google Scholar
[4] C. Gejke, J. Swenson, R. G. Delaplané, L. Börjesson, Phys. Rev. B2002, 65, 212201.10.1103/PhysRevB.65.212201Suche in Google Scholar
[5] C. Gejke, E. Zanghellini, L. Fransson, K. Edstrom, L. Borjesson, J. Power Sources2001, 97–98, 226.10.1016/S0378-7753(01)00662-0Suche in Google Scholar
[6] C. Gejke, E. Zanghellini, J. Swenson, L. Börjesson, J. Power Sources2003, 119, 576.10.1016/S0378-7753(03)00290-8Suche in Google Scholar
[7] D. Holland, M. E. Smith, A. P. Howes, T. Davies, L. Barrett, Phys. Chem. Glasses2003, 44, 59.Suche in Google Scholar
[8] S. Schönegger, K. Wurst, G. Heymann, A. Schaur, A. Saxer, D. Johrendt, H. Huppertz, J. Solid State Chem.2018, 258, 410.10.1016/j.jssc.2017.11.004Suche in Google Scholar
[9] G. M. Sheldrick, Sadabs-2014/5, Program for Empirical Absorption Correction of Area Detector Data, Bruker AXS Inc., Madison, Wisconsin (USA) 2015.Suche in Google Scholar
[10] G. M. Sheldrick, Shelxl-2013/1, Program Suite for the Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 2013.Suche in Google Scholar
[11] G. Sheldrick, Acta Crystallogr.2015, C71, 3.Suche in Google Scholar
[12] Opus (version 7.2), Bruker, Billerica (USA) 2012.Suche in Google Scholar
[13] G. Kresse, J. Furthmüller, Comput. Mat. Sci.1996, 6, 15.10.1016/0927-0256(96)00008-0Suche in Google Scholar
[14] G. Kresse, D. Joubert, Phys. Rev. B1999, 59, 1758.10.1103/PhysRevB.59.1758Suche in Google Scholar
[15] P. E. Blöchl, Phys. Rev. B1994, 50, 17953.10.1103/PhysRevB.50.17953Suche in Google Scholar PubMed
[16] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.1996, 77, 3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar PubMed
[17] A. Savin, R. Nesper, S. Wengert, T. F. Fässler, Angew. Chem. Int. Ed. Engl.1997, 36, 1808.10.1002/anie.199718081Suche in Google Scholar
[18] T. F. Fässler, A. Savin, Chem. Unserer Zeit1997, 31, 110.10.1002/ciuz.19970310303Suche in Google Scholar
[19] G.-M. Wang, Y.-Q. Sun, G.-Y. Yang, J. Solid State Chem.2006, 179, 398.10.1016/j.jssc.2005.10.034Suche in Google Scholar
[20] E. L. Belekoneva, T. A. Korchemkina, O. V. Dimitrova, Zh. Neorg. Khim.1999, 44, 951.Suche in Google Scholar
[21] A. L. Spek, Acta Crystallogr.2009, D65, 148.10.1107/S090744490804362XSuche in Google Scholar
[22] L. M. Gelato, E. Parthe, J. Appl. Crystallogr.1987, 20, 139.10.1107/S0021889887086965Suche in Google Scholar
[23] H.-Y. Sun, W. Sun, Y.-X. Huang, J.-X. Mi, Z. Anorg. Allg. Chem.2010, 636, 977.10.1002/zaac.201000066Suche in Google Scholar
[24] N. A. Yamnova, Y. K. Egorov-Tismenko, N. V. Zubkova, O. V. Dimitrova, A. P. Kantor, Crystallogr. Rep.2005, 50, 766.10.1134/1.2049393Suche in Google Scholar
[25] C.-Y. Pan, G.-M. Wang, S.-T. Zheng, G.-Y. Yang, J. Solid State Chem.2007, 180, 1553.10.1016/j.jssc.2007.01.038Suche in Google Scholar
[26] P. C. Burns, F. C. Grice, F. C. Hawthorne, Can. Mineral1995, 33, 1131.Suche in Google Scholar
[27] E. Zobetz, Z. Kristallogr.1990, 191, 45.10.1524/zkri.1990.191.1-2.45Suche in Google Scholar
[28] E. Hinteregger, T. S. Hofer, G. Heymann, L. Perfler, F. Kraus, H. Huppertz, Chem. – Eur. J.2013, 19, 15985.10.1002/chem.201302378Suche in Google Scholar PubMed PubMed Central
[29] G.-M. Wang, Y.-Q. Sun, S.-T. Zheng, G.-Y. Yang, Z. Anorg. Allg. Chem.2006, 632, 1586.10.1002/zaac.200600054Suche in Google Scholar
[30] L. Pauling, J. Am. Chem. Soc.1947, 69, 542.10.1021/ja01195a024Suche in Google Scholar
[31] A. Byström, K.-A. Wilhelmi, Acta Chem. Scand.1951, 5, 1003.10.3891/acta.chem.scand.05-1003Suche in Google Scholar
[32] I. D. Brown, D. Altermatt, Acta Crystallogr.1985, B41, 244.10.1107/S0108768185002063Suche in Google Scholar
[33] N. E. Brese, M. O’Keeffe, Acta Crystallogr.1991, B47, 192.10.1107/S0108768190011041Suche in Google Scholar
[34] N. E. Brese, M. O’Keeffe, Structure and Bonding, Springer-Verlag, Berlin 1989.Suche in Google Scholar
[35] H. R. Xia, L. X. Li, B. Teng, W. Q. Zheng, G. W. Lu, H. D. Jiang, J. Y. Wang, J. Raman Spectrosc.2002, 33, 278.10.1002/jrs.847Suche in Google Scholar
[36] R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H. P. Müller, K. J. Bernet, J. Less-Common Met.1989, 156, 105.10.1016/0022-5088(89)90411-6Suche in Google Scholar
[37] K. Machida, H. Hata, K. Okuno, G. Adachi, J. Shiokawa, J. Inorg. Nucl. Chem.1979, 41, 1425.10.1016/0022-1902(79)80205-5Suche in Google Scholar
[38] J. P. Laperches, P. Tarte, Spectrochim. Acta1966, 22, 1201.10.1016/0371-1951(66)80023-1Suche in Google Scholar
[39] S. D. Ross, Spectrochim. Acta1972, 28, 1555.10.1016/0584-8539(72)80126-0Suche in Google Scholar
[40] W. Baur, Acta Crystallogr.1972, B28, 1456.10.1107/S0567740872004455Suche in Google Scholar
[41] K. Nakamoto, M. Margoshes, R. E. Rundle, J. Am. Chem. Soc.1955, 77, 6480.10.1021/ja01629a013Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations
- 2-Naphthol-pyrazole conjugates as substrates in the Mannich reaction
- A heterotrimetallic Ni(II)–Dy(III) bis(salamo)-based complex: synthesis, structure and fluorescent property
- A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst
- Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation
- Triclinic conformational polymorph of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine (TCED)
- Lanthanide(III) complex metal-organic frameworks with a phenanthroline-carboxylate derivate and 2,5-thiophenedicarboxylate coligand: hydrothermal synthesis, crystal structure, and high thermostability
- Synthesis, crystal structure and photoluminescence of Re(I)2(μ-4,4′-bipyridine)(8-quinolinolato)2(CO)6
- A dinuclear molybdenum(VI) complex with a triaminoguanidine ligand: synthesis and structure of [Mo2O4(OH2)(DMF)(HtBu6L)]·3DMF ([H6tBu6L]Cl=tris(3,5-di-tert-butyl-2-hydroxybenzylidene)-triaminoguanidinium chloride)
- Syntheses and crystal structures of ruthenium complexes with bidentate salicylaldiminato and dithiophosphato ligands
- Synthesis and characterization of the new tin borate SnB8O11(OH)4
- Strukturen zweier Salze des Bis(thioharnstoff)gold(I)-Kations
- Book Review
- Metallo-Drugs: Development and Action of Anticancer Agents
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations
- 2-Naphthol-pyrazole conjugates as substrates in the Mannich reaction
- A heterotrimetallic Ni(II)–Dy(III) bis(salamo)-based complex: synthesis, structure and fluorescent property
- A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst
- Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation
- Triclinic conformational polymorph of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine (TCED)
- Lanthanide(III) complex metal-organic frameworks with a phenanthroline-carboxylate derivate and 2,5-thiophenedicarboxylate coligand: hydrothermal synthesis, crystal structure, and high thermostability
- Synthesis, crystal structure and photoluminescence of Re(I)2(μ-4,4′-bipyridine)(8-quinolinolato)2(CO)6
- A dinuclear molybdenum(VI) complex with a triaminoguanidine ligand: synthesis and structure of [Mo2O4(OH2)(DMF)(HtBu6L)]·3DMF ([H6tBu6L]Cl=tris(3,5-di-tert-butyl-2-hydroxybenzylidene)-triaminoguanidinium chloride)
- Syntheses and crystal structures of ruthenium complexes with bidentate salicylaldiminato and dithiophosphato ligands
- Synthesis and characterization of the new tin borate SnB8O11(OH)4
- Strukturen zweier Salze des Bis(thioharnstoff)gold(I)-Kations
- Book Review
- Metallo-Drugs: Development and Action of Anticancer Agents