Abstract
An efficient protocol for the synthesis of 2-arylsulfonyl quinolines has been developed via a metal-free catalyzed cross-coupling reaction of chloroquinoline with sodium arylsulfinates in moderate-to-good yields under microwave irradiation. The reactions proceed with a wide range of substrates with good functional group tolerance.
Acknowledgments
We gratefully acknowledge the Department of Henan Province Natural Science and Technology Foundation (No. 172102210225), Natural Science Foundation in Henan Province Department of Education (No. 17A150005), the Program for Innovative Research Team from Zhengzhou (No. 131PCXTD605), and the Project of Youth Backbone Teachers of Henan University of Technology (2016).
References
[1] E. J. Emmett, M. C. Willis, Asian J. Org. Chem. 2015, 4, 602.10.1002/ajoc.201500103Suche in Google Scholar
[2] G. Liu, C. Fan, J. Wu, Org. Biomol. Chem. 2015, 13, 1592.10.1039/C4OB02139HSuche in Google Scholar
[3] J. Aziz, S. Messaoudi, M. Alami, A. Hamze, Org. Biomol. Chem.2014, 12, 9743.10.1039/C4OB01727GSuche in Google Scholar PubMed
[4] N. W. Liu, S. Liang, G. Manolikakes, Synthesis2016, 48, 1939.10.1055/s-0035-1560444Suche in Google Scholar
[5] E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257.10.1021/jm501100bSuche in Google Scholar PubMed
[6] X. C. Hang, T. Fleetham, E. Turner, J. Brooks, J. Li, Angew. Chem. Int. Ed. 2013, 52, 6753.10.1002/anie.201302541Suche in Google Scholar PubMed
[7] M. A. Grassberger, F. Turnowsky, J. Hildebrandt, J. Med. Chem. 1984, 27, 947.10.1021/jm00374a003Suche in Google Scholar PubMed
[8] H. Y. Lee, J. Y. Chang, C. Y. Nien, C. C. Kuo, K. H. Shih, C. H. Wu, C. Y. Chang, W. Y. Lai, J. P. Liou, J. Med. Chem. 2011, 54, 8517.10.1021/jm201031fSuche in Google Scholar PubMed
[9] W. G. Trankle, M. E. Kopach, Org. Process Res. Dev. 2007, 11, 913.10.1021/op700060eSuche in Google Scholar
[10] Z. Y. Wu, H. Y. Song, X. L. Cui, C. Pi, W. W. Du, Y. J. Wu, Org. Lett. 2013, 15, 1270.10.1021/ol400178kSuche in Google Scholar PubMed
[11] K. Sun, X. L. Chen, X. Li, L. B. Qu, W. Z. Bi, X. Chen, H. L. Ma, S. T. Zhang, B. W. Han, Y. F. Zhao, C. J. Li, Chem. Commun. 2015, 51, 12111.10.1039/C5CC04484GSuche in Google Scholar
[12] R. J. Wang, Z. B. Zeng, C. Chen, N. N. Yi, J. Jiang, Z. Cao, W. Deng, J. N. Xiang, Org. Biomol. Chem. 2016, 14, 5317.10.1039/C6OB00925ESuche in Google Scholar
[13] Y. Su, X. J. Zhou, C. L. He, W. Zhang, X. Ling, X. Xiao, J. Org. Chem. 2016, 81, 4981.10.1021/acs.joc.6b00475Suche in Google Scholar PubMed
[14] B. N. Du, P. Qian, Y. Wang, H. B. Mei, J. L. Han, Y. Pan, Org. Lett. 2016, 18, 4144.10.1021/acs.orglett.6b02289Suche in Google Scholar PubMed
[15] W. K. Fu, K. Sun, C. Qu, X. L. Chen, L. B. Qu, W. Z. Bi, Y. F. Zhao, Asian J. Org. Chem. 2017, 6, 492.10.1002/ajoc.201700001Suche in Google Scholar
[16] L. Sumunnee, C. Buathongjan, C. Pimpasri, S. Yotphan, Eur. J. Org. Chem. 2017, 2017, 1025.10.1002/ejoc.201601443Suche in Google Scholar
[17] A. V. Ivachtchenko, E. S. Golovina, M. G. Kadieva, V. M. Kysil, O. D. Mitkin, S. E. Tkachenko, I. M. Okun, J. Med. Chem. 2011, 54, 8161.10.1021/jm201079gSuche in Google Scholar PubMed
[18] R. A. Hartz, A. G. Arvanitis, C. Arnold, J. P. Rescinito, K. L. Hung, G. Zhang, H. Wong, D. R. Langlev, P. J. Gilligan, G. L. Trainor, Bioorg. Med. Chem. Lett. 2006, 16, 934.10.1016/j.bmcl.2005.10.097Suche in Google Scholar PubMed
[19] S. C. Surprenant, W. Y. Chan, C. Berthelette, Org. Lett. 2003, 5, 4851.10.1021/ol035918kSuche in Google Scholar PubMed
[20] N. S. Li, L. Scharf, E. J. Adams, J. A. Piccirilli, J. Org. Chem. 2013, 78, 5970.10.1021/jo4006602Suche in Google Scholar PubMed
[21] S. Liang, R. Y. Zhang, L. Y. Xi, S. Y. Chen, X. Q. Yu, J. Org. Chem. 2013, 78, 11874.10.1021/jo401828bSuche in Google Scholar PubMed
[22] W. Zhu, D. W. Ma, J. Org. Chem. 2005, 70, 2696.10.1021/jo047758bSuche in Google Scholar PubMed
[23] S. Cacchi, G. Fabrizi, A. Goggiamani, L. M. Parisi, R. Bernini, J. Org. Chem. 2004, 69, 5608.10.1021/jo0493469Suche in Google Scholar PubMed
[24] K. M. Maloney, J. T. Kuethe, K. Linn, Org. Lett. 2011, 13, 102.10.1021/ol102629cSuche in Google Scholar PubMed
[25] Y. Q. Yuan, S. R. Guo, Synlett2011, 18, 2750.10.1055/s-0031-1289541Suche in Google Scholar
[26] B. Qu, L. P. Samankumara, J. Savoie, D. R. Fandrick, N. Haddad, X. Wei, S. Ma, H. Lee, S. Rodriguez, C. A. Busacca, N. K. Yee, J. J. Song, J. Org. Chem. 2014, 79, 993.10.1021/jo4024864Suche in Google Scholar PubMed
[27] D. J. Brown, P. W. Ford, J. Chem. Soc. C1967, 7, 568.10.1039/j39670000568Suche in Google Scholar
Supplemental Material:
The online version of this article offers supplementary ma(https://doi.org/10.1515/znb-2018-0007).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations
- 2-Naphthol-pyrazole conjugates as substrates in the Mannich reaction
- A heterotrimetallic Ni(II)–Dy(III) bis(salamo)-based complex: synthesis, structure and fluorescent property
- A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst
- Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation
- Triclinic conformational polymorph of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine (TCED)
- Lanthanide(III) complex metal-organic frameworks with a phenanthroline-carboxylate derivate and 2,5-thiophenedicarboxylate coligand: hydrothermal synthesis, crystal structure, and high thermostability
- Synthesis, crystal structure and photoluminescence of Re(I)2(μ-4,4′-bipyridine)(8-quinolinolato)2(CO)6
- A dinuclear molybdenum(VI) complex with a triaminoguanidine ligand: synthesis and structure of [Mo2O4(OH2)(DMF)(HtBu6L)]·3DMF ([H6tBu6L]Cl=tris(3,5-di-tert-butyl-2-hydroxybenzylidene)-triaminoguanidinium chloride)
- Syntheses and crystal structures of ruthenium complexes with bidentate salicylaldiminato and dithiophosphato ligands
- Synthesis and characterization of the new tin borate SnB8O11(OH)4
- Strukturen zweier Salze des Bis(thioharnstoff)gold(I)-Kations
- Book Review
- Metallo-Drugs: Development and Action of Anticancer Agents
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations
- 2-Naphthol-pyrazole conjugates as substrates in the Mannich reaction
- A heterotrimetallic Ni(II)–Dy(III) bis(salamo)-based complex: synthesis, structure and fluorescent property
- A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst
- Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation
- Triclinic conformational polymorph of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine (TCED)
- Lanthanide(III) complex metal-organic frameworks with a phenanthroline-carboxylate derivate and 2,5-thiophenedicarboxylate coligand: hydrothermal synthesis, crystal structure, and high thermostability
- Synthesis, crystal structure and photoluminescence of Re(I)2(μ-4,4′-bipyridine)(8-quinolinolato)2(CO)6
- A dinuclear molybdenum(VI) complex with a triaminoguanidine ligand: synthesis and structure of [Mo2O4(OH2)(DMF)(HtBu6L)]·3DMF ([H6tBu6L]Cl=tris(3,5-di-tert-butyl-2-hydroxybenzylidene)-triaminoguanidinium chloride)
- Syntheses and crystal structures of ruthenium complexes with bidentate salicylaldiminato and dithiophosphato ligands
- Synthesis and characterization of the new tin borate SnB8O11(OH)4
- Strukturen zweier Salze des Bis(thioharnstoff)gold(I)-Kations
- Book Review
- Metallo-Drugs: Development and Action of Anticancer Agents