Home Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations
Article
Licensed
Unlicensed Requires Authentication

Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations

  • Javad Safaei-Ghomi EMAIL logo , Reza Aghagoli and Hossein Shahbazi-Alavi
Published/Copyright: May 1, 2018
Become an author with De Gruyter Brill

Abstract

An efficient synthesis of hexahydro-4-phenylquinoline-3-carbonitriles is described by the four-component condensation reaction of cyclohexanone, ammonium acetate, malononitrile, and aromatic aldehydes using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations. The reusability of the catalyst and little catalyst loading, excellent yields, short reaction times, using the sonochemical procedure as a green process and an alternative energy source are some benefits of this method.

Acknowledgement

The authors are grateful to the University of Kashan for supporting this work.

References

[1] R. S. Upadhayaya, S. V. Lahore, A. Y. Sayyed, S. S. Dixit, P. D. Shinde, J. Chattopadhyaya, Org. Biomol. Chem.2010, 8, 2180.10.1039/b924102gSearch in Google Scholar

[2] A. B. A. El-Gazzar, H. N. Hafez, G. A. M. Nawwar, Eur. J. Med. Chem. 2009, 44, 1427.10.1016/j.ejmech.2008.09.030Search in Google Scholar

[3] E. Rajanarendar, M. N. Reddy, S. R. Krishna, K. R. Murthy, Y. N. Reddy, M. V. Rajam, Eur. J. Med. Chem. 2012, 55, 273.10.1016/j.ejmech.2012.07.029Search in Google Scholar

[4] A. Shi, T. A. Nguyen, S. K. Battina, S. Rana, D. J. Takemoto, P. K. Chiang, D. H. Hua, Bioorg. Med. Chem. Lett. 2008, 18, 3364.10.1016/j.bmcl.2008.04.024Search in Google Scholar

[5] S. Vangapandu, M. Jain, R. Jain, S. Kaur, P. P. Singh, Bioorg. Med. Chem. 2004, 12, 2501.10.1016/j.bmc.2004.03.045Search in Google Scholar

[6] N. C. Warshakoon, J. Sheville, R. T. Bhatt, W. Ji, J. L. Mendez-Andino, K. M. Meyers, N. Kim, J. A. Wos, C. Mitchell, J. L. Paris, B. B. Pinney, O. Reizes, X. E. Hu, Bioorg. Med. Chem. Lett. 2006, 16, 5207.10.1016/j.bmcl.2006.07.006Search in Google Scholar

[7] B. R. Mcnaughton, B. L. Miller, Org. Lett. 2003, 5, 4257.10.1021/ol035333qSearch in Google Scholar

[8] G. Babu, P. T. Perumal, Tetrahedron Lett.1998, 39, 3225.10.1016/S0040-4039(98)00397-9Search in Google Scholar

[9] S. K. De, R. A. Gibbs, Tetrahedron Lett. 2005, 46, 1647.10.1016/j.tetlet.2005.01.075Search in Google Scholar

[10] S. S. Palimkar, S. A. Siddiqui, T. Daniel, R. J. Lahoti, K. V. Srinivasan, J. Org. Chem.2003, 68, 9371.10.1021/jo035153uSearch in Google Scholar PubMed

[11] A. Shaabani, A. Rahmati, Z. Badri, Catal. Commun. 2008, 9, 13.10.1016/j.catcom.2007.05.021Search in Google Scholar

[12] J. Wu, H. G. Xia, K. Gao, Org. Biomol. Chem. 2006, 4, 126.10.1039/B514635FSearch in Google Scholar

[13] J. Safaei-Ghomi, H. Shahbazi-Alavi, Sci. Iran. Trans. C2017, 24, 1209.10.24200/sci.2017.4105Search in Google Scholar

[14] J. Safaei-Ghomi, H. Shahbazi-Alavi, P. Babaei, Z. Naturforsch.2016, 71b, 849.10.1515/znb-2016-0041Search in Google Scholar

[15] M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42, 3371.10.1039/c3cs35480fSearch in Google Scholar PubMed

[16] A. Rabiei, S. Abdolmohammadi, F. Shafaei, Z. Naturforsch. 2017, 72b, 241.10.1515/znb-2016-0219Search in Google Scholar

[17] A. Maleki, R. Paydar, RSC Adv. 2015, 5, 33177.10.1039/C5RA03355ASearch in Google Scholar

[18] J. Safaei-Ghomi, S. Paymard-Samani, S. Zahedi, H. Shahbazi-Alavi, Z. Naturforsch. 2015, 70b, 819.10.1515/znb-2015-0070Search in Google Scholar

[19] K. Turhan, S. A. Ozturkcan, M. Uluer, Z. Turgut, Acta Chim. Slov.2014, 61, 623.Search in Google Scholar

[20] P. Estifaee, M. Haghighi, N. Mohammadi, F. Rahmani, Ultrason. Sonochem. 2014, 21, 1155.10.1016/j.ultsonch.2013.11.019Search in Google Scholar PubMed

[21] N. Shabalala, R. Pagadala, S. B. Jonnalagadda, Ultrason. Sonochem. 2015, 27, 423.10.1016/j.ultsonch.2015.06.005Search in Google Scholar PubMed

[22] C. W. Lu, J. J. Wang, Y. H. Liu, W. J. Shan, Q. Sun, L. Shi, Res. Chem. Intermed. 2017, 43, 943.10.1007/s11164-016-2675-8Search in Google Scholar

[23] J. Safaei-Ghomi, F. Eshteghal, H. Shahbazi-Alavi, Ultrason. Sonochem.2016, 33, 99.10.1016/j.ultsonch.2016.04.025Search in Google Scholar PubMed

[24] J. Safaei-Ghomi, H. Shahbazi-Alavi, J. Saudi Chem. Soc. 2017, 21, 698.10.1016/j.jscs.2017.03.002Search in Google Scholar

[25] M. Iranmanesh, J. Hulliger, Chem. Soc. Rev. 2017, 46, 5925.10.1039/C7CS00230KSearch in Google Scholar

[26] S. H. Moon, S. H. Noh, J. H. Lee, T. H. Shin, Y. Lim, J. Cheon, Nano Lett.2017, 17, 800.10.1021/acs.nanolett.6b04016Search in Google Scholar PubMed

[27] J. Liang, Y. Wu, C. Liu, Y. C. Cao, J. A. Liu, Y. Lin, Sens. Actuators B2017, 241, 758.10.1016/j.snb.2016.10.147Search in Google Scholar

[28] M. B. El-Ashmawy, M. A. El-Sherbeny, N. S. El-Gohary, Med. Chem. Res. 2013, 22, 2724.10.1007/s00044-012-0272-ySearch in Google Scholar

[29] M. M. Heravi, S. Y. S. Beheshtiha, M. Dehghani, N. Hosseintash, J. Iran. Chem. Soc. 2015, 12, 2075.10.1007/s13738-015-0684-ySearch in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2017-0200).


Received: 2017-11-10
Accepted: 2018-2-25
Published Online: 2018-5-1
Published in Print: 2018-5-24

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations
  4. 2-Naphthol-pyrazole conjugates as substrates in the Mannich reaction
  5. A heterotrimetallic Ni(II)–Dy(III) bis(salamo)-based complex: synthesis, structure and fluorescent property
  6. A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst
  7. Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation
  8. Triclinic conformational polymorph of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine (TCED)
  9. Lanthanide(III) complex metal-organic frameworks with a phenanthroline-carboxylate derivate and 2,5-thiophenedicarboxylate coligand: hydrothermal synthesis, crystal structure, and high thermostability
  10. Synthesis, crystal structure and photoluminescence of Re(I)2(μ-4,4′-bipyridine)(8-quinolinolato)2(CO)6
  11. A dinuclear molybdenum(VI) complex with a triaminoguanidine ligand: synthesis and structure of [Mo2O4(OH2)(DMF)(HtBu6L)]·3DMF ([H6tBu6L]Cl=tris(3,5-di-tert-butyl-2-hydroxybenzylidene)-triaminoguanidinium chloride)
  12. Syntheses and crystal structures of ruthenium complexes with bidentate salicylaldiminato and dithiophosphato ligands
  13. Synthesis and characterization of the new tin borate SnB8O11(OH)4
  14. Strukturen zweier Salze des Bis(thioharnstoff)gold(I)-Kations
  15. Book Review
  16. Metallo-Drugs: Development and Action of Anticancer Agents
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2017-0200/html
Scroll to top button