Home A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst
Article
Licensed
Unlicensed Requires Authentication

A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst

  • Mostafa Karami and Abdolkarim Zare EMAIL logo
Published/Copyright: April 24, 2018
Become an author with De Gruyter Brill

Abstract

A solvent-free protocol for the production of 1-thioamidoalkyl-2-naphthols via a one-pot multi-component reaction of arylaldehydes with 2-naphthol and thioacetamide using the ionic liquid 1,3-disulfonic acid imidazolium trifluoroacetate ([Dsim][TFA]) is described. Furthermore, a plausible and attractive mechanism based on the dual functionality of the catalyst is proposed. Because of the dual functionality of [Dsim][TFA] (possessing acidic and basic sites), it is found to be generally highly effective, affording the products in high yields and short reaction times under mild conditions. We claim that this is one of the best protocols for the synthesis of 1-thioamidoalkyl-2-naphthols (in terms of yield, temperature, conditions, and/or the reaction time).

Acknowledgment

We thank Research Council of Payame Noor University for providing the necessary research facilities and financial support for carrying out this work.

References

[1] H.-X. Wei, D. Lu, V. Sun, J. Zhang, Y. Gu, P. Osenkowski, W. Ye, D. J. Selkoe, M. S. Wolfe, C. E. Augelli-Szafran, Bioorg. Med. Chem. Lett.2016, 26, 2133.10.1016/j.bmcl.2016.03.042Search in Google Scholar

[2] M. Kidwai, R. Chauhan, Asian J. Org. Chem.2013, 2, 395.10.1002/ajoc.201300039Search in Google Scholar

[3] N. Gyemant, H. Engi, Z. Schelz, I. Szatmari, D. Toth, F. Fulop, J. M. Nar, P. D. Witte, Br. J. Cancer2010, 103, 178.10.1038/sj.bjc.6605716Search in Google Scholar

[4] A. Y. Shen, C. T. Tsai, C. L. Chen, Eur. J. Med. Chem.1999, 34, 877.10.1016/S0223-5234(99)00204-4Search in Google Scholar

[5] M. Akaiwa, T. Kanbara, H. Fukumoto, T. Yamamoto, J. Organomet. Chem.2005, 690, 4192.10.1016/j.jorganchem.2005.06.026Search in Google Scholar

[6] F. Arnaud-Neu, G. Barrett, D. Corry, S. Cremin, G. Ferguson, J. F. Gallagher, S. J. Harris, M. A. McKervey, M.-J. Schwing-Weill, J. Chem. Soc., Perkin Trans.1997, 2, 575.10.1039/a605417jSearch in Google Scholar

[7] J. H. Miwa, A. K. Patel, N. Vivatrat, S. M. Popek, A. M. Meyer, Org. Lett.2001, 3, 3373.10.1021/ol0166092Search in Google Scholar PubMed

[8] J. M. Goldberg, R. F. Wissner, A. M. Klein, E. J. Petersson, Chem. Commun.2012, 48, 1550.10.1039/C1CC14708KSearch in Google Scholar

[9] F. Wang, R. Langley, G. Gulten, L. G. Dover, G. S. Besra, W. R. Jacobs Jr., J. C. Sacchettini, J. Exp. Med.2007, 204, 73.10.1084/jem.20062100Search in Google Scholar PubMed PubMed Central

[10] P. W. Tan, A. M. Mak, M. B. Sullivan, D. J. Dixon, J. Seayad, Angew. Chem. Int. Ed.2017, 56, 16550.10.1002/anie.201709273Search in Google Scholar PubMed

[11] Y. Singjunla, M. Pigeaux, R. Laporte, J. Baudoux, J. Rouden, Eur. J. Org. Chem.2017, 2017, 4319.10.1002/ejoc.201700870Search in Google Scholar

[12] M. N. Xanthopoulou, S. K. Hadjikakou, N. Hadjiliadis, E. R. Milaeva, J. A. Gracheva, V. Y. Tyurin, N. Kourkoumelis, K. C. Christoforidis, A. K. Metsios, S. Karkabounas, K. Charalabopoulos, Eur. J. Med. Chem.2008, 43, 327.10.1016/j.ejmech.2007.03.028Search in Google Scholar PubMed

[13] C. Jiang, P. J. Young, S. Brown-Xu, J. C. Gallucci, M. H. Chisholm, Inorg. Chem.2017, 56, 1433.10.1021/acs.inorgchem.6b02517Search in Google Scholar PubMed

[14] A. Khazaei, F. Abbasi, A. R. Moosavi-Zare, M. Khazaei, M. H. Beyzavi, J. Chin. Chem. Soc.2015, 62, 850.10.1002/jccs.201500125Search in Google Scholar

[15] H. Eshghi, G. H. Zohuri, S. Damavandi, Synth. Commun.2012, 42, 516.10.1080/00397911.2010.526281Search in Google Scholar

[16] A. Ghorbani-Choghamarani, S. Rashidimoghadam, Res. Chem. Intermed.2015, 41, 6271.10.1007/s11164-014-1738-ySearch in Google Scholar

[17] A. Khazaei, M. A. Zolfigol, A. R. Moosavi-Zare, F. Abi, A. Zare, H. Kaveh, V. Khakyzadeh, M. Kazem-Rostami, A. Parhami, H. Torabi-Monfared, Tetrahedron2013, 69, 212.10.1016/j.tet.2012.10.042Search in Google Scholar

[18] A. Khazaei, F. Abbasi, A. R. Moosavi-Zare, J. Sulfur Chem.2015, 36, 364.10.1080/17415993.2015.1028938Search in Google Scholar

[19] A. Zare, H. Kaveh, M. Merajoddin, A. R. Moosavi-Zare, A. Hasaninejad, M. A. Zolfigol, Phosphorus Sulfur Silicon Relat. Elem.2013, 188, 573.10.1080/10426507.2012.692131Search in Google Scholar

[20] A. Hassanabadi, M. R. Hosseini-Tabatabaei, J. Chem. Res.2012, 36, 510.10.3184/174751912X13408123396599Search in Google Scholar

[21] A. Zare, S. Akbarzadeh, E. Foroozani, H. Kaveh, A. R. Moosavi-Zare, A. Hasaninejad, M. Mokhlesi, M. H. Beyzavi, M. A. Zolfigol, J. Sulfur Chem.2012, 33, 259.10.1080/17415993.2012.690415Search in Google Scholar

[22] A. S. Amarasekara, Chem. Rev.2016, 116, 6133.10.1021/acs.chemrev.5b00763Search in Google Scholar PubMed

[23] R. L. Vekariya, J. Mol. Liq.2017, 227, 44.10.1016/j.molliq.2016.11.123Search in Google Scholar

[24] A. A. Marzouk, A. A. Abdelhamid, S. K. Mohamed, J. Simpson, Z. Naturforsch.2017, 72b, 23.10.1515/znb-2016-0121Search in Google Scholar

[25] A. K. Dutta, P. Gogoi, R. Borah, RSC Adv.2014, 4, 41287.10.1039/C4RA07323ASearch in Google Scholar

[26] M. A. Zolfigol, A. Khazaei, A. R. Moosavi-Zare, A. Zare, H. G. Kruger, Z. Asgari, V. Khakyzadeh, M. Kazem-Rostami, J. Org. Chem.2012, 77, 3640.10.1021/jo300137wSearch in Google Scholar PubMed

[27] A. Zare, Z. Nasouri, J. Mol. Liq.2016, 216, 364.10.1016/j.molliq.2016.01.056Search in Google Scholar

[28] A. Zare, T. Yousofi, A. R. Moosavi-Zare, RSC Adv.2012, 2, 7988.10.1039/c2ra20679jSearch in Google Scholar

[29] M. A. Zolfigol, A. Khazaei, A. R. Moosavi-Zare, A. Zare, V. Khakyzadeh, Appl. Catal. A2011, 400, 70.10.1016/j.apcata.2011.04.013Search in Google Scholar

[30] A. R. Moosavi-Zare, M. A. Zolfigol, V. Khakyzadeh, C. Böttcher, M. H. Beyzavi, A. Zare, A. Hasaninejad, R. Luque, J. Mater. Chem. A2014, 2, 770.10.1039/C3TA13484ASearch in Google Scholar

[31] J. Safaei-Ghomi, S. H. Nazemzadeh, H. Shahbazi-Alavi, Z. Naturforsch.2017, 72b, 927.10.1515/znb-2017-0091Search in Google Scholar

[32] E. Lamera, S. Bouacida, M. L. Borgne, Z. Bouaziz, A. Bouraiou, Tetrahedron Lett.2017, 58, 1305.10.1016/j.tetlet.2017.02.047Search in Google Scholar

[33] M. Himaja, D. Poppy, K. Asif, Int. J. Res. Ayurveda Pharm.2011, 2, 1079.Search in Google Scholar

[34] G. B. D. Rao, S. Nagakalyanb, G. K. Prasad, RSC Adv.2017, 7, 3611.10.1039/C6RA26664ASearch in Google Scholar

[35] A. Zare, A. R. Moosavi-Zare, M. Merajoddin, M. A. Zolfigol, T. Hekmat-Zadeh, A. Hasaninejad, A. Khazaei, M. Mokhlesi, V. Khakyzadeh, F. Derakhshan-Panah, M. H. Beyzavi, E. Rostami, A. Arghoon, R. Roohandeh, J. Mol. Liq.2012, 167, 69.10.1016/j.molliq.2011.12.012Search in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0001).


Received: 2018-1-1
Accepted: 2018-2-26
Published Online: 2018-4-24
Published in Print: 2018-5-24

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations
  4. 2-Naphthol-pyrazole conjugates as substrates in the Mannich reaction
  5. A heterotrimetallic Ni(II)–Dy(III) bis(salamo)-based complex: synthesis, structure and fluorescent property
  6. A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst
  7. Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation
  8. Triclinic conformational polymorph of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine (TCED)
  9. Lanthanide(III) complex metal-organic frameworks with a phenanthroline-carboxylate derivate and 2,5-thiophenedicarboxylate coligand: hydrothermal synthesis, crystal structure, and high thermostability
  10. Synthesis, crystal structure and photoluminescence of Re(I)2(μ-4,4′-bipyridine)(8-quinolinolato)2(CO)6
  11. A dinuclear molybdenum(VI) complex with a triaminoguanidine ligand: synthesis and structure of [Mo2O4(OH2)(DMF)(HtBu6L)]·3DMF ([H6tBu6L]Cl=tris(3,5-di-tert-butyl-2-hydroxybenzylidene)-triaminoguanidinium chloride)
  12. Syntheses and crystal structures of ruthenium complexes with bidentate salicylaldiminato and dithiophosphato ligands
  13. Synthesis and characterization of the new tin borate SnB8O11(OH)4
  14. Strukturen zweier Salze des Bis(thioharnstoff)gold(I)-Kations
  15. Book Review
  16. Metallo-Drugs: Development and Action of Anticancer Agents
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0001/html
Scroll to top button