Startseite Study of shocks in a nonideal dusty gas using Maslov, Guderley, and CCW methods for shock exponents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study of shocks in a nonideal dusty gas using Maslov, Guderley, and CCW methods for shock exponents

  • Swati Chauhan , Antim Chauhan und Rajan Arora EMAIL logo
Veröffentlicht/Copyright: 20. September 2021

Abstract

In this work, we consider the system of partial differential equations describing one-dimensional (1D) radially symmetric (i.e., cylindrical or spherical) flow of a nonideal gas with small solid dust particles. We analyze the implosion of cylindrical and spherical symmetric strong shock waves in a mixture of a nonideal gas with small solid dust particles. An evolution equation for the strong cylindrical and spherical shock waves is derived by using the Maslov technique based on the kinematics of 1D motion. The approximate value of the similarity exponent describing the behavior of strong shocks is calculated by applying a first-order truncation approximation. The obtained approximate values of similarity exponent are compared with the values of the similarity exponent obtained from Whitham’s rule and Guderley’s method. All the above computations are performed for the different values of mass fraction of dust particles, relative specific heat, and the ratio of the density of dust particle to the density of the mixture and van der Waals excluded volume.


Corresponding author: Rajan Arora, Department of Applied Science and Engineering, Indian Institute of Technology, Roorkee, India, E-mail:

Funding source: Ministry of Human Resource Development

Funding source: University Grant Commission

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The first author, Swati Chauhan, acknowledges the financial support from the Ministry of Human Resource Development, New Delhi. The second author, Antim Chauhan, acknowledges the research support from the University Grant Commission (Govt. of India) (Sr. No. 2121541039 with Ref No. 20/12/2015 (ii) EU-V).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] P. D. Lax, “Hyperbolic system of conservation laws II,” Commun. Pure Appl. Math., vol. 10, pp. 537–566, 1957. https://doi.org/10.1002/cpa.3160100406.Suche in Google Scholar

[2] L. Landau and E. Lifshitz, Fluid Mechanics, Oxford, Pergamon Press, 1959.Suche in Google Scholar

[3] Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. I, New York, Academic Press, 1966.Suche in Google Scholar

[4] Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. II, New York, Academic Press, 1967.Suche in Google Scholar

[5] G. B. Whitham, Linear and Nonlinear Waves, New York, John Wiley & Sons, 1974.Suche in Google Scholar

[6] P. L. Sachdev, Shock Waves and Explosions, Boca Raton, Chapman and Hall/CRC, 2004.Suche in Google Scholar

[7] V. D. Sharma, Quasilinear Hyperbolic Systems, Compressible Flows and Waves, Boca Raton, Chapman and Hall/CRC, 2010.10.1201/9781439836910Suche in Google Scholar

[8] V. P. Maslov, “Propagation of shock waves in an isentropic nonviscous gas,” J. Sov. Math., vol. 13, pp. 119–163, 1980. https://doi.org/10.1007/bf01084111.Suche in Google Scholar

[9] C. Radha and V. D. Sharma, “On one dimensional planar and non-planar shock waves in a relaxing gas,” Phys. Fluids, vol. 6, pp. 2177–2190, 1994.10.1063/1.868220Suche in Google Scholar

[10] C. Radha, V. D. Sharma, and A. Jeffrey, “An approximate analytical method for describing the kinematics of a bore over a sloping beach,” Hist. Anthropol., vol. 81, pp. 867–892, 2002. https://doi.org/10.1080/0003681021000004474.Suche in Google Scholar

[11] B. Gupta and J. Jena, “Kinematics of spherical waves in interstellar gas clouds,” Int. J. Non Lin. Mech., vol. 99, pp. 51–58, 2019.10.1016/j.ijnonlinmec.2017.10.022Suche in Google Scholar

[12] A. Chauhan and R. Arora, “Kinematics of spherical shock waves in an interstellar ideal gas clouds with dust particles,” Math. Methods Appl. Sci., vol. 44, pp. 6282–6300, 2021.10.1002/mma.7182Suche in Google Scholar

[13] S. Mehla and J. Jena, “Shock wave kinematics in a relaxing gas with dust particles,” Z. Naturforsch., vol. 74, pp. 787–798, 2019. https://doi.org/10.1515/zna-2018-0469.Suche in Google Scholar

[14] S. Shah and R. Singh, “Propagation of non-planar weak and strong shocks in a non-ideal relaxing gas,” Ric. di Mat., pp. 1–23, 2019. https://doi.org/10.1007/s11587-019-00472-w.Suche in Google Scholar

[15] M. Singh, R. Arora, and A. Chauhan, “One-dimensional cylindrical shock waves in non-ideal gas under magnetic field,” Ric. di Mat., pp. 1–13, 2020. https://doi.org/10.1007/s11587-020-00524-6.Suche in Google Scholar

[16] G. Guderley, “Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw der Zylinderachse,” Luftfahrtforschung, vol. 19, pp. 302–312, 1942.Suche in Google Scholar

[17] S. I. Pai, S. Menon, and Z. Q. Fan, “Similarity solutions of a strong shock wave propagation in a mixture of a gas and dusty particles,” Int. J. Eng. Sci., vol. 18, pp. 1365–1373, 1980. https://doi.org/10.1016/0020-7225(80)90093-2.Suche in Google Scholar

[18] V. D. Sharma and C. Radha, “Similarity solutions for converging shocks in relaxing gas,” Int. J. Eng. Sci., vol. 33, no. 4, pp. 535–553, 1995. https://doi.org/10.1016/0020-7225(94)00086-7.Suche in Google Scholar

[19] S. Chauhan, A. Chauhan, and R. Arora, “Similarity solutions of converging shock waves in an ideal relaxing gas with dust particles,” Eur. Phys. J. Plus, vol. 35, pp. 1–22, 2020. https://doi.org/10.1140/epjp/s13360-020-00823-9.Suche in Google Scholar

[20] S. Shah and R. Singh, “Imploding shocks in real reacting gases with dust particles,” J. Math. Phys., vol. 61, p. 033506, 2020. https://doi.org/10.1063/1.5142327.Suche in Google Scholar

[21] J. P. Vishwakarma and G. Nath, “Similarity solutions for the flow behind an exponential shock in a non-ideal gas,” Meccanica, vol. 42, pp. 331–339, 2007. https://doi.org/10.1007/s11012-007-9058-6.Suche in Google Scholar

[22] B. H. K. Lee, “The initial phases of collapse of an imploding shock wave and the application to hypersonic internal flow,” CASI Trans., vol. 1, pp. 57–67, 1968.Suche in Google Scholar

[23] M. Van Dyke and A. J. Guttmann, “The converging shock wave from a spherical or cylindrical piston,” J. Fluid Mech., vol. 120, pp. 451–462, 1982. https://doi.org/10.1017/s0022112082002845.Suche in Google Scholar

[24] R. F. Chisnell, “An analytic description of converging shock waves,” J. Fluid Mech., vol. 354, pp. 357–375, 1998. https://doi.org/10.1017/s0022112097007775.Suche in Google Scholar

[25] A. Chauhan, R. Arora, and A. Tomar, “Converging strong shock wave in magnetogasdynamics under isothermal condition,” Ric. di Mat., pp. 1–17, 2020. https://doi.org/10.1007/s11587-020-00491-y.Suche in Google Scholar

[26] A. Chauhan, R. Arora, and A. Tomar, “Convergence of strong shock waves in a non-ideal magnetogasdynamics,” Phys. Fluids, vol. 30, p. 116105, 2018. https://doi.org/10.1063/1.5051589.Suche in Google Scholar

[27] M. Chadha and J. Jena, “Self-similar solutions and converging shocks in a non-ideal gas with dust particles,” Int. J. Non Lin. Mech., vol. 65, pp. 164–172, 2014. https://doi.org/10.1016/j.ijnonlinmec.2014.05.013.Suche in Google Scholar

[28] M. Chadha and J. Jena, “Singular surface and steepening of waves in a non-ideal gas with dust particles,” Comput. Appl. Math., vol. 34, pp. 729–739, 2015. https://doi.org/10.1007/s40314-014-0135-x.Suche in Google Scholar

[29] S. I. Pai, “Two-phase flows,” in Vieweg Tracts in Pure and Applied Physics, vol. 3, Braunschweig, Vieweg, 1977, Chap. V.10.1007/978-3-322-86348-5Suche in Google Scholar

[30] C. C. Wu and P. H. Roberts, “Structure and stability of a spherical shock wave in a Van der Waals gas,” Quart. J. Mech. Appl. Math., vol. 49, pp. 501–543, 1996. https://doi.org/10.1093/qjmam/49.4.501.Suche in Google Scholar

Received: 2021-02-23
Revised: 2021-08-07
Accepted: 2021-09-05
Published Online: 2021-09-20
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0049/html?lang=de
Button zum nach oben scrollen