Startseite Lebenswissenschaften Accelerated aging and aging process in the brain
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Accelerated aging and aging process in the brain

  • Nickolay K. Isaev EMAIL logo , Elisaveta E. Genrikhs , Maria V. Oborina und Elena V. Stelmashook
Veröffentlicht/Copyright: 18. November 2017

Abstract

One of the approaches to the research of the problem of aging is the study of genetic pathologies leading to accelerated aging, such as the Hutchinson-Gilford progeria syndrome, Werner syndrome, and Down syndrome. Probably, this approach can be used in an attempt to understand the neuronal mechanisms underlying normal and pathological brain aging. The analysis of the current state of scientific knowledge about these pathologies shows that in the Hutchinson-Gilford progeria and Werner syndrome, the rate of brain aging is significantly lower than the rate of whole body aging, whereas in Down syndrome, the brain ages faster than other organs due to amyloid-beta accumulation and chronic oxidative stress in the brain tissue. The main point of a previously proposed hypothesis is that the aging of higher animals and humans is associated with an increased level of reactive oxygen species in mitochondria with age, which activates apoptosis, thus reducing the number of functioning cells.

Acknowledgments

Our work receives financial support from the Russian Science Foundation (projects no. 14-24-00107, sections ‘Normal Aging’, and no. 16-15-10108, other sections).

References

Allsopp, R.C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E.V., Futcher, A.B., Greider, C.W., and Harley, C.B. (1992). Telomere length predicts replicative capacity of human fibroblasts, Proc. Natl. Acad. Sci. USA 89, 10114–10118.10.1073/pnas.89.21.10114Suche in Google Scholar

An, S. and Jang, Y. (2016). The role of social capital in the relationship between physical constraint and mental distress in older adults: a latent interaction model. Aging Ment. Health 4, 1–5.10.1080/13607863.2016.1247431Suche in Google Scholar

Baek, J.H., Schmidt, E., Viceconte, N., Strandgren, C., Pernold, K., Richard, T.J., Van Leeuwen, F.W., Dantuma, N.P., Damberg, P., Hultenby, K., et al. (2015). Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum. Mol. Genet. 24, 1305–1321.10.1093/hmg/ddu541Suche in Google Scholar PubMed

Barja, G. and Herrero, A. (2000). Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J. 14, 312–318.10.1096/fasebj.14.2.312Suche in Google Scholar PubMed

Bertoni-Freddari, C., Fattoretti, P., Casoli, T., Caselli, U., and Meier-Ruge, W. (1996). Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type. Anal. Quant. Cytol. Histol. 18, 209–213.Suche in Google Scholar PubMed

Bishop, N.A., Lu, T., and Yankner, B.A. (2010). Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535.10.1038/nature08983Suche in Google Scholar PubMed

Cao, K., Capell, B.C., Erdos, M.R., Djabali, K., and Collins, F.S. (2007). A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc. Natl. Acad. Sci. USA 104, 4949–4954.10.1073/pnas.0611640104Suche in Google Scholar

Celsi, F., Ferri, A., Casciati, A., D’Ambrosi, N., Rotilio, G., Costa, A., Volonté, C., and Carrì, M.T. (2004). Overexpression of superoxide dismutase 1 protects against beta-amyloid peptide toxicity: effect of estrogen and copper chelators. Neurochem. Int. 44, 25–33.10.1016/S0197-0186(03)00101-3Suche in Google Scholar PubMed

Chan, P.H., Kawase, M., Murakami, K., Chen, S.F., Li, Y., Calagui, B., Reola, L., Carlson, E., and Epstein, C.J. (1998). Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J. Neurosci. 18, 8292–8299.10.1523/JNEUROSCI.18-20-08292.1998Suche in Google Scholar PubMed

Corral-Debrinski, M., Horton, T., Lott, M.T., Shoffner, J.M., McKee, A.C., Beal, M.F., Graham, B.H., and Wallace, D.C. (1994). Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23, 471–476.10.1006/geno.1994.1525Suche in Google Scholar PubMed

De Stefano, N., Dotti, M.T., Battisti, C., Sicurelli, F., Stromillo, M.L., Mortilla, M., and Federico, A. (2003). MR evidence of structural and metabolic changes in brains of patients with Werner’s syndrome. J. Neurol. 250, 1169–1173.10.1007/s00415-003-0167-4Suche in Google Scholar PubMed

Freeman, S.H., Kandel, R., Cruz, L., Rozkalne, A., Newell, K., Frosch, M.P., Hedley-Whyte, E.T., Locascio, J.J., Lipsitz, L.A., and Hyman, B.T. (2008). Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J. Neuropathol. Exp. Neurol. 67, 1205–1212.10.1097/NEN.0b013e31818fc72fSuche in Google Scholar PubMed

Glenner, G.G. and Wong, C.W. (1984). Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135.10.1016/0006-291X(84)91209-9Suche in Google Scholar PubMed

Glasson, E.J., Sullivan, S.G., Hussain, R., Petterson, B.A., Montgomery, P.D., and Bittles, A.H. (2002). The changing survival profile of people with Down’s syndrome: implications for genetic counseling. Clin. Genet. 62, 390–393.10.1034/j.1399-0004.2002.620506.xSuche in Google Scholar PubMed

Gordon, L.B., Brown, W.T., and Collins, F.S. (2003). Hutchinson–Gilford Progeria Syndrome, In: GeneReviews®, R.A. Pagon, M.P. Adam, H.H. Ardinger, S.E. Wallace, A. Amemiya, L.J.H. Bean, T.D. Bird, C.T. Fong, H.C. Mefford, R.J.H. Smith, et al., eds. Seattle (WA, USA): University of Washington, Seattle; 1993–2016. Available from http://www.ncbi.nlm.nih.gov/books/NBK1121/.Suche in Google Scholar

Graziotto, J.J., Cao, K., Collins, F.S., and Krainc, D. (2012). Rapamycin activates autophagy in Hutchinson–Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders. Autophagy 8, 147–151.10.4161/auto.8.1.18331Suche in Google Scholar PubMed PubMed Central

Gulesserian, T., Seidl, R., Hardmeier, R., Cairns, N., and Lubec, G. (2001). Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J. Investig. Med. 49, 41–46.10.2310/6650.2001.34089Suche in Google Scholar PubMed

Head, E., Lott, I.T., Patterson, D., Doran, E., and Haier, R.J. (2007). Possible compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: targets for nonpharmacological intervention. J. Alzheimers Dis. 11, 61–76.10.3233/JAD-2007-11110Suche in Google Scholar PubMed

Head, E., Lott, I.T., Wilcock, D.M., and Lemere, C.A. (2016). Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr. Alzheimer Res. 13, 18–29.10.2174/1567205012666151020114607Suche in Google Scholar PubMed PubMed Central

Horvath, S., Garagnani, P., Bacalini, M.G., Pirazzini, C., Salvioli, S., Gentilini, D., Di Blasio, A.M., Giuliani, C., Tung, S., Vinters, H.V., et al. (2015). Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495.10.1111/acel.12325Suche in Google Scholar PubMed PubMed Central

Huang, S., Lee, L., Hanson, N.B., Lenaerts, C., Hoehn, H., Poot, M., Rubin, C.D., Chen, D.F., Yang, C.C., Juch, H., et al. (2006). The spectrum of WRN mutations in Werner syndrome patients. Hum. Mutat. 27, 558–567.10.1002/humu.20337Suche in Google Scholar PubMed PubMed Central

Inano, S., Takao, H., Hayashi, N., Abe, O., and Ohtomo, K. (2011). Effects of age and gender on white matter integrity. Am. J. Neuroradiol. 32, 2103–2109.10.3174/ajnr.A2785Suche in Google Scholar PubMed PubMed Central

Isaev, N.K., Stelmashook, E.V, Stelmashook, N.N., Sharonova, I.N., and Skrebitsky, V.G. (2013). Brain aging and mitochondria-targeted plastoquinone antioxidants of SkQ-type. Biochemistry (Mosc.) 78, 295–300.10.1134/S0006297913030127Suche in Google Scholar PubMed

Isaev, N.K., Stelmashook, E.V., Genrikhs, E.E., Oborina, M.V., Kapkaeva, M.R., and Skulachev, V.P. (2015). Alzheimer’s disease: an exacerbation of senile phenoptosis. Biochemistry (Mosc.) 80, 1578–1581.10.1134/S0006297915120056Suche in Google Scholar PubMed

Jeppesen, D.K., Bohr, V.A., and Stevnsner, T. (2011). DNA repair deficiency in neurodegeneration. Prog. Neurobiol. 94, 166–200.10.1016/j.pneurobio.2011.04.013Suche in Google Scholar PubMed PubMed Central

Jung, H.J., Coffinier, C., Choe, Y., Beigneux, A.P., Davies, B.S., Yang, S.H., Barnes, R.H. 2nd, Hong, J., Sun, T., Pleasure, S.J., et al. (2012). Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc. Natl. Acad. Sci. USA 109, E423–E431.10.1073/pnas.1111780109Suche in Google Scholar PubMed PubMed Central

Jung, H.J., Tu, Y., Yang, S.H., Tatar, A., Nobumori, C., Wu, D., Young, S.G., and Fong, L.G. (2014). New Lmna knock-in mice provide a molecular mechanism for the ‘segmental aging’ in Hutchinson–Gilford progeria syndrome. Hum. Mol. Genet. 23, 1506–1515.10.1093/hmg/ddt537Suche in Google Scholar PubMed PubMed Central

Kerbler, G.M., Fripp, J., Rowe, C.C., Villemagne, V.L., Salvado, O., Rose, S., and Coulson, E.J. (2014). Alzheimer’s disease neuroimaging initiative. Basal forebrain atrophy correlates with amyloid βburden in Alzheimer’s disease. Neuroimage Clin. 7, 105–113.10.1016/j.nicl.2014.11.015Suche in Google Scholar PubMed PubMed Central

Kruk, P.A., Rampino, N.J., and Bohr, V.A. (1995). DNA damage and repair in telomeres: relation to aging, Proc. Natl. Acad. Sci. USA 92, 258–262.10.1073/pnas.92.1.258Suche in Google Scholar PubMed PubMed Central

Kubben, N., Zhang, W., Wang, L., Voss, T.C., Yang, J., Qu, J., Liu, G.H., and Misteli, T. (2016). Repression of the antioxidant NRF2 pathway in premature aging. Cell 165, 1361–1374.10.1016/j.cell.2016.05.017Suche in Google Scholar PubMed PubMed Central

Leverenz, J.B. and Raskind, M.A. (1998). Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp. Neurol. 150, 296–304.10.1006/exnr.1997.6777Suche in Google Scholar PubMed

Leverenz, J.B., Yu, C.E., and Schellenberg, G.D. (1998). Aging-associated neuropathology in Werner syndrome. Acta Neuropathol. (Berl.) 96, 421–424.10.1007/s004010050914Suche in Google Scholar PubMed

Lloret, A., Badia, M.C., Giraldo, E., Ermak, G., Alonso, M.D., Pallardo, F.V., Davies, K.J.A., and Vina, J. (2011). Alzheimer’s amyloid-βtoxicity and tau hyperphosphorylation are linked via RCAN1. J. Alzheimer’s Dis. 27, 701–709.10.3233/JAD-2011-110890Suche in Google Scholar PubMed PubMed Central

Lott, I.T. and Head, E. (2005). Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiol. Aging 26, 383–389.10.1016/j.neurobiolaging.2004.08.005Suche in Google Scholar PubMed

Louneva, N., Cohen, J. W., Han, L.-Y., Talbot, K., Wilson, R.S., Bennett, D.A., Trojanowski, J.Q., and Arnold, S.E. (2008). Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am. J. Pathol. 173, 1488–1495.10.2353/ajpath.2008.080434Suche in Google Scholar PubMed PubMed Central

Lu, P.H., Lee, G.J., Raven, E.P., Tingus, K., Khoo, T., Thompson, P.M., and Bartzokis, G. (2011). Age-related slowing in cognitive processing speed is associated with myelin integrity in a very healthy elderly sample. J. Clin. Exp. Neuropsychol. 33, 1059–1068.10.1080/13803395.2011.595397Suche in Google Scholar PubMed PubMed Central

Mori, H., Tomiyama, T., Maeda, N., Ozawa, K., and Wakasa, K. (2003). Lack of amyloid plaque formation in the central nervous system of a patient with Werner syndrome. Neuropathology 23, 51–56.10.1046/j.1440-1789.2003.00474.xSuche in Google Scholar PubMed

Olive, M., Harten, I., Mitchell, R., Beers, J.K., Djabali, K., Cao, K., Erdos, M.R., Blair, C., Funke, B., Smoot, L., et al. (2010). Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging. Arterioscler. Thromb. Vasc. Biol. 30, 2301–2309.10.1161/ATVBAHA.110.209460Suche in Google Scholar PubMed PubMed Central

Pannese, E. (2011). Morphological changes in nerve cells during normal aging. Brain Struct. Funct. 216, 85–89.10.1007/s00429-011-0308-ySuche in Google Scholar PubMed

Papa, S. and Skulachev, V.P. (1997). Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell. Biochem. 174, 305–319.10.1023/A:1006873518427Suche in Google Scholar PubMed

Payao, S.L., de Labio, R.W., Gatti, L.L., Rigolin, V.O., Bertolucci, P.H., and Smith, Mde. (2004). A Werner helicase polymorphism is not associated with Alzheimer’s disease. J. Alzheimers Dis. 6, 591–594; discussion 673–681.10.3233/JAD-2004-6603Suche in Google Scholar PubMed

Peters, A. (2009). The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front. Neuroanat. 3, 11.10.3389/neuro.05.011.2009Suche in Google Scholar PubMed PubMed Central

Postiglione, A., Soricelli, A., Covelli, E.M., Iazzetta, N., Ruocco, A., Milan, G., Santoro, L., Alfano, B., and Brunetti, A. (1996). Premature aging in Werner’s syndrome spares the central nervous system. Neurobiol. Aging 17, 325–330.10.1016/0197-4580(96)00033-4Suche in Google Scholar PubMed

Rivera-Torres, J., Acin-Perez, R., Cabezas-Sanchez, P., Osorio, F.G., Gonzalez-Gomez, C., Megias, D., Camara, C., Lopez-Otin, C., Enriquez, J.A., Luque-Garcia, J.L., et al. (2013). Identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J. Proteomics 91, 466–477.10.1016/j.jprot.2013.08.008Suche in Google Scholar PubMed

Rodrigues, A.N., Coelho, L.C., Goncalves, W.L., Gouvea, S.A., Vasconcellos, M.J., Cunha, R.S., and Abreu, G.R. (2011). Stiffness of the large arteries in individuals with and without Down syndrome. Vasc. Health Risk Manag. 7, 375–381.10.2147/VHRM.S21273Suche in Google Scholar PubMed PubMed Central

Rossi, M.L., Ghosh, A.K., and Bohr, V.A. (2010). Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst.) 9, 331–344.10.1016/j.dnarep.2009.12.011Suche in Google Scholar PubMed PubMed Central

Saito, A., Hayashi, T., Okuno, S., Ferrand-Drake, M., and Chan, P.H. (2003). Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway. J. Neurosci. 23, 1710–1718.10.1523/JNEUROSCI.23-05-01710.2003Suche in Google Scholar PubMed

Schmitt, K., Grimm, A., Kazmierczak, A., Strosznajder, J.B., Gotz, J., and Eckert, A. (2012). Insights into mitochondrial dysfunction: aging, amyloid-β and τ – a deleterious trio. Antioxid. Redox Signal. 16, 1456–1466.10.1089/ars.2011.4400Suche in Google Scholar PubMed

Severin, F.F. and Skulachev, V.P. (2009). Programmed cell death as a target to interrupt the aging program. Adv. Gerontol. 22, 37–48.10.1134/S2079057011010139Suche in Google Scholar PubMed

Skulachev, V.P. (2012). Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J. Alzheimers Dis. 28, 283–289.10.3233/JAD-2011-111391Suche in Google Scholar PubMed

Smith, M.A., Perry, G., Richey, P.L., Sayre, L.M., Anderson, V.E., Beal, M.F., and Kowall, N. (1996). Oxidative damage in Alzheimer’s. Nature 382, 120–121.10.1038/382120b0Suche in Google Scholar PubMed

Smith, D.E., Rapp, P.R., McKay, H.M., Roberts, J.A, and Tuszynski, M.H. (2004). Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J. Neurosci. 24, 4373–4381.10.1523/JNEUROSCI.4289-03.2004Suche in Google Scholar PubMed PubMed Central

Stanton, L.R. and Coetzee, R.H. (2004). Down’s syndrome and dementia. Adv. Psychiatr. Treat. 10, 50–58.10.1192/apt.10.1.50Suche in Google Scholar

Stavrovskaya, A.V., Yamshchikoval N.G., Ol‘shanskiyl A.S., Babkinl G.A., and Illarioshkinl, S.N. (2016). Evaluation of the effects of new peptide compounds in experimental animals with a toxic model of Alzheimer’s disease. Ann. Clin. Exp. Neurol. 10, 33–42.Suche in Google Scholar

Stelmashook, E.V., Isaev, N.K., Genrikhs, E.E., Amelkina, G.A., Khaspekov, L.G., Skrebitsky, V.G., and Illarioshkin, S.N. (2014). Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry (Mosc.) 79, 391–396.10.1134/S0006297914050022Suche in Google Scholar PubMed

Strauss, D. and Eyman, R.K. (1996). Mortality of people with mental retardation in California with and without Down syndrome, 1986–1991. Am. J. Ment. Retard. 100, 643–653.Suche in Google Scholar PubMed

Tamagno, E., Parola, M., Bardini, P., Piccini, A., Borghi, R., Guglielmotto, M., Santoro, G., Davit, A., Danni, O., Smith, M.A., et al. (2005). Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J. Neurochem. 92, 628–636.10.1111/j.1471-4159.2004.02895.xSuche in Google Scholar PubMed

Tamagno, E., Guglielmotto, M., Aragno, M., Borghi, R., Autelli, R., Giliberto, L., Muraca, G., Danni, O., Zhu, X., Smith, M.A., et al. (2008). Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the β-amyloid precursor protein. J. Neurochem. 104, 683–695.Suche in Google Scholar PubMed

Tanzi, R.E., Haines, J.L., Watkins, P.C., Stewart, G.D., Wallace, M.R., Hallewell, R., Wong, C., Wexler, N.S., Conneally, P.M., and Gusella, J.F. (1988). Genetic linkage map of human chromosome 21. Genomics 3, 129–136.10.1016/0888-7543(88)90143-7Suche in Google Scholar PubMed

Ullrich, N.J. and Gordon, L.B. (2015). Hutchinson–Gilford progeria syndrome. Handb. Clin. Neurol. 132, 249–264.10.1016/B978-0-444-62702-5.00018-4Suche in Google Scholar PubMed

Valenti, D., Manente, G.A., Moro, L., Marra, E., and Vacca, R.A. (2011). Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem. J. 435, 679–688.10.1042/BJ20101908Suche in Google Scholar PubMed

Wang, P., Chen, H., Qin, H., Sankarapandi, S., Becher, M.W., Wong, P.C., and Zweier, J.L. (1998). Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc. Natl. Acad. Sci. USA 95, 4556–4560.10.1073/pnas.95.8.4556Suche in Google Scholar

Wisniewski, K.E., Wisniewski, H.M., and Wen, G.Y. (1985). Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17, 278–282.10.1002/ana.410170310Suche in Google Scholar PubMed

Xekardaki, A., Kоvari, E., Gold, G., Papadimitropoulou, A., Giacobini, E., Herrmann, F., Giannakopoulos, P., and Bouras, C. (2015). Neuropathological changes in aging brain. Adv. Exp. Med. Biol. 821, 11–17.10.1007/978-3-319-08939-3_6Suche in Google Scholar PubMed

Yang, Q., Rasmussen, S.A., and Friedman, J.M. (2002). Mortality associated with Down’s syndrome in the USA from 1983 to 1997: a population-based study. Lancet 359, 1019–1025.10.1016/S0140-6736(02)08092-3Suche in Google Scholar PubMed

Received: 2017-7-6
Accepted: 2017-8-11
Published Online: 2017-11-18
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2017-0051/html?lang=de
Button zum nach oben scrollen