Home Life Sciences The neurophysiology of working memory development: from childhood to adolescence and young adulthood
Article
Licensed
Unlicensed Requires Authentication

The neurophysiology of working memory development: from childhood to adolescence and young adulthood

  • Carlos M. Gómez EMAIL logo , Catarina Isabel Barriga-Paulino , Elena Isabel Rodríguez-Martínez , Ma Ángeles Rojas-Benjumea , Antonio Arjona and Jaime Gómez-González
Published/Copyright: November 25, 2017

Abstract

Working memory (WM) is an important cognitive function that is necessary to perform our daily activities. The present review briefly describes the most accepted models underlying WM and the neural networks involved in its processing. The review focuses on how the neurophysiological mechanisms develop with age in the periods from childhood to adolescence and young adulthood. Studies using behavioral, neuroimaging, and electrophysiological techniques showed the progress of WM throughout the development. The present review focuses on the neurophysiology of the basic processes underlying WM operations, as indicated by electroencephalogram-derived signals, in order to take advantage of the excellent time resolution of this technique. Children and adults use similar cerebral mechanisms and areas to encode, recognize, and keep the stimuli in memory and update the WM contents, although adults rely more on anterior sites. The possibility that a functional reorganization of WM brain processing occurs around the adolescent period is suggested, and would partly justify the high prevalence of the emergence of mental pathology in the adolescent period.

Acknowledgments

This work has been possible thanks to grants from the Ministry of Science and Innovation PSI2013-47506-R and PSI2016-80059-R (FEDER funds from the EU), and from the Consejería de Innovación, Ciencia y Empresa of the Junta de Andalucía. We thank to prof. Santiago Pelegrina for the careful review of this manuscript.

References

Baddeley, A. (1992). Working memory. Science 255, 556–559.10.1126/science.1736359Search in Google Scholar PubMed

Baddeley, A. (1996). The fractionation of working memory. Proc. Natl. Acad. Sci. USA 93, 13468–13472.10.1073/pnas.93.24.13468Search in Google Scholar

Baddeley, A. (1998). Working memory. Acad. Sci. 321, 167–173.10.1016/S0764-4469(97)89817-4Search in Google Scholar

Baddeley, A. (2012). Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63, 1–29.10.1146/annurev-psych-120710-100422Search in Google Scholar PubMed

Baddeley, A.D. and Hitch, G. (1974). Working Memory. The Psychology of Learning and Motivation: Adv. Res. Theor. Vol. 8. G. H. Bower, ed. (New York: Academic Press), pp. 47–89.10.1016/S0079-7421(08)60452-1Search in Google Scholar

Barceló, F., Martín-Loeches, M., and Rubia, F.J. (1997). Event-related potentials during memorization of spatial locations in the auditory and visual modalities. Electroen. Clin. Neurophysiol. 103, 257–267.10.1016/S0013-4694(97)96610-4Search in Google Scholar

Barceló, F., Periañez, J.A., and Knight, R.T. (2002). Think differently: a brain orienting response to task novelty. Neuroreport 13, 1887–1892.10.1097/00001756-200210280-00011Search in Google Scholar PubMed

Barrett, S.E., Rugg, M.D., and Perrett, D.I. (1988). Event-related potentials and the matching of familiar and unfamiliar faces. Neuropsychologia 26, 105–117.10.1016/0028-3932(88)90034-6Search in Google Scholar PubMed

Barriga-Paulino, C.I., Flores, A.B., Rodríguez-Martínez, E.I., Chinchilla, C., and Gómez, C.M. (2013). Multivariate and wavelet techniques of spontaneous electroencephalography and event related potentials during children maturation – the role of phase resetting. J. Biomed. Sci. Eng. 6, 669–682.10.4236/jbise.2013.66082Search in Google Scholar

Barriga-Paulino, C.I., Rodríguez-Martínez, E.I., Rojas-Benjumea, M.A., and Gómez, C M. (2014). Slow wave maturation on a visual working memory task. Brain Cognit. 88, 43–54.10.1016/j.bandc.2014.04.003Search in Google Scholar PubMed

Barriga-Paulino, C.I., Rodríguez-Martínez, E.I., Rojas-Benjumea, M.A., and Gómez, C.M. (2015a). Electrophysiological evidence of a delay in the visual selection process in youngest children. Front. Hum. Neurosci. 9, 622.10.3389/fnhum.2015.00622Search in Google Scholar

Barriga-Paulino, C.I., Rojas-Benjumea, M.A., Rodríguez-Martínez, E.I., and Gómez, C.M. (2015b). Fronto-temporo-occipital activity changes with age during a visual working memory developmental study in children, adolescents and adults. Neurosci. Lett. 599, 26–31.10.1016/j.neulet.2015.05.017Search in Google Scholar

Barriga-Paulino, C.I., Rodríguez-Martínez, E.I., Rojas-Benjumea, M.A., and Gómez, C.M. (2016). Principal component analysis of working memory variables during child and adolescent development. Spanish J. Psychol. 19, e62, 1–13.10.1017/sjp.2016.64Search in Google Scholar

Barriga-Paulino, C.I., Rodríguez-Martínez, E.I., Arjona, A., Morales, M., and Gómez, C.M. (2017). Developmental trajectories of event related potentials related to working memory. Neuropsychologia 95, 215–226.10.1016/j.neuropsychologia.2016.12.026Search in Google Scholar PubMed

Barrouillet, P., Gavens, N., Vergauwe, E., Gaillard, V., and Camos, V. (2009). Working memory span development: a time-based resource-sharing model account. Dev. Psychol. 45, 477–490.10.1037/a0014615Search in Google Scholar PubMed

Basar-Eroglu, C., Basar, E., Demiralp, T., and Schürmann, M. (1992). P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int. J. Psychophysiol. 13, 161–179.10.1016/0167-8760(92)90055-GSearch in Google Scholar

Bear, M.F., Paradiso, M.A., and Connors, B.W. (2001). Neuroscience: Exploring the Brain. 2nd ed (Philadelphia: Williams and Wilkins/Lippincott).Search in Google Scholar

Bender, S., Weisbrod, M., Bornfleth, H., Resch, F., and Oelkers-Ax, R. (2005). How do children prepare to react? Imaging maturation of motor preparation and stimulus anticipation by late contingent negative variation. Neuroimage 27, 737–752.10.1016/j.neuroimage.2005.05.020Search in Google Scholar PubMed

Berti, S., Geissler, H-G., Lachmann, T., and Mecklinger, A. (2000). Event-related brain potentials dissociate visual working memory processes under categorical and identical comparison conditions. Cognit. Brain Res. 9, 147–155.10.1016/S0926-6410(99)00051-8Search in Google Scholar

Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., and Linden, D.E.J. (2004). Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J. Neurosci. 24, 9353–9360.10.1523/JNEUROSCI.1897-04.2004Search in Google Scholar PubMed PubMed Central

Bressler, S.L. and Richter, C.G. (2015). Interareal oscillatory synchronization in top-down neocortical processing. Curr. Opin. Neurobiol. 31 62–66.10.1016/j.conb.2014.08.010Search in Google Scholar PubMed

Buzsáki, G. (2006). Rhythms of the Brain (New York: Oxford University Press).10.1093/acprof:oso/9780195301069.001.0001Search in Google Scholar

Cabeza, R. and Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cognitive Neurosci. 12, 1–47.10.1162/08989290051137585Search in Google Scholar

Carretié, L. (2001). Psicofisiología (Madrid, Spain: Pirámide).Search in Google Scholar

Case, R., Kurland, D.M., and Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. J. Exp. Child Psychol. 33, 386–404.10.1016/0022-0965(82)90054-6Search in Google Scholar

Chelazzi, L., Miller, E.K., Duncan, J., and Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347.10.1038/363345a0Search in Google Scholar PubMed

Chelazzi, L., Miller, E.K., Duncan, J., and Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guided visual search. Cereb. Cortex 11, 761–772.10.1093/cercor/11.8.761Search in Google Scholar PubMed

Chelonis, J.J., Daniels-Shaw, J.L., Blake, D.J., and Paule, M.G. (2000). Developmental aspects of delayed matching-to-sample task performance in children. Neurotoxicol. Teratol. 22, 683–694.10.1016/S0892-0362(00)00090-8Search in Google Scholar PubMed

Chiarenza, G.A., Papakostopoulos, D., Giordana, F., and Guareschi-Cazzullo, A. (1983). Movement-related brain macropotentials during skilled performances. A developmental study. Electroen. Clin. Neuro. 56, 373–383.10.1016/0013-4694(83)90263-8Search in Google Scholar

Conklin, H.M., Luciana, M., Hooper, C.J., and Yarger, R.S. (2007). Working memory performance in typically developing children and adolescents: behavioral evidence of protracted frontal lobe development. Dev. Neuropsychol. 31, 103–128.10.1207/s15326942dn3101_6Search in Google Scholar PubMed

Constantinidis, C. and Klingberg, T. (2016). The neuroscience of working memory capacity and training. Nat. Rev. Neurosci. 17, 438–449.10.1038/nrn.2016.43Search in Google Scholar PubMed

Cordones, I., Gómez, C.M., and Escudero, M. (2013). Cortical dynamics during the preparation of antisaccadic and prosaccadic eye movements in humans in a gap paradigm. PLoS One 8, e63751.10.1371/journal.pone.0063751Search in Google Scholar PubMed PubMed Central

Couperus, J.W. and Quirk, C. (2015). Visual search and the N2pc in children. Atten. Percept. Psycho. 77, 768–776.10.3758/s13414-015-0833-5Search in Google Scholar

Courchesne, E. (1978). Neurophysiological correlates of cognitive development: changes in long latency event-related potentials from childhood to adulthood. Electroen. Clin. Neuro. 45, 468–482.10.1016/0013-4694(78)90291-2Search in Google Scholar

Cowan, N. (1995). Attention and Memory: An Integrated Framework. (New York: Oxford University Press).Search in Google Scholar

Cowan, N. (2010). Multiple concurrent thoughts: the meaning and developmental neuropsychology of working memory. Dev. Neuropsychol. 35, 447–474.10.1080/87565641.2010.494985Search in Google Scholar PubMed PubMed Central

Crone, E.A., Wendelken, C., Donohue, S., Van Leijenhorst, L., and Bunge, S.A. (2006). Neurocognitive development of the ability to manipulate information in working memory. PNAS USA 103, 9315–9320.10.1073/pnas.0510088103Search in Google Scholar PubMed PubMed Central

D‘Esposito, M. and Postle, B.R. (2015). The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66, 115–142.10.1146/annurev-psych-010814-015031Search in Google Scholar PubMed PubMed Central

De Avila, E. (1974). Children‘s transformations of visual information according to nonverbal syntactical rules. Unpublished doctoral dissertation, York University.Search in Google Scholar

Diaz, S. (1974). Cucui scale: technical manual multilingual assessment program. Stockton Unified District, Stockton, CA.Search in Google Scholar

Digiacomo, M.R., Marco-Pallarés, J., Flores, A.B., and Gómez, C.M. (2008). Wavelet analysis of the EEG during the neurocognitive evaluation of invalidly cued targets. Brain. Res. 1234, 94–103.10.1016/j.brainres.2008.07.072Search in Google Scholar PubMed

Donchin, E. and Coles, M.G.H. (1988a). Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11, 355–374.10.1017/S0140525X00058027Search in Google Scholar

Donchin, E. and Coles, M.G.H. (1988b). On the conceptual foundations of cognitive psychophysiology: a reply to comments. Behav. Brain Sci. 11, 408–427.10.1017/S0140525X00058246Search in Google Scholar

Durston, S., Davidson, M.C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J.A., and Casey, B.J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Sci. 9, 1–20.10.1111/j.1467-7687.2005.00454.xSearch in Google Scholar PubMed

Ecker, U.K., Lewandowsky, S., Oberauer, K., and Chee, A.E. (2010). The components of working memory updating: an experimental decomposition and individual differences. J. Exp. Psychol. Learn. 36, 170–189.10.1037/a0017891Search in Google Scholar PubMed

Eimer, M. (1994). Sensory gating as a mechanism for visuospatial orienting: electrophysiological evidence from trial-by-trial cuing experiments. Percept. Psychophys. 55, 667–675.10.3758/BF03211681Search in Google Scholar PubMed

Eriksson, J., Vogel, E.K., Lansner, A., Bergström, F., and Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron 88, 33–46. PMID 26447571.10.1016/j.neuron.2015.09.020Search in Google Scholar PubMed

Evans, J.L., Selinger, C., and Pollak, S.D. (2011). P300 as a measure of processing capacity in auditory and visual domains in specific language impairment. Brain Res. 1389, 93–102.10.1016/j.brainres.2011.02.010Search in Google Scholar PubMed

Finn, A.S., Sheridan, M.A., Kam, C.L.H., Hinshaw, S., and D‘Esposito M. (2010). Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J. Neurosci. 30, 11062–11067.10.1523/JNEUROSCI.6266-09.2010Search in Google Scholar PubMed

Flores, A.B., Digiacomo, M.R., Meneres, S., Trigo, E., and Gómez, C.M. (2009). Development of preparatory activity indexed by the contingent negative variation in children. Brain Cognition 71, 129–140.10.1016/j.bandc.2009.04.011Search in Google Scholar

Flores, A.B., Gómez, C.M., and Meneres, S. (2010). Evaluation of spatial validity-invalidity effects by the P300 component in children and young adults. Brain Res. Bull. 81, 525–533.10.1016/j.brainresbull.2010.01.005Search in Google Scholar

Friedman, D., Cycowicz, Y.M., and Gaeta, H. (2001). The novelty P3: an event-related brain potential (ERP) sign of the brain‘s evaluation of novelty. Neurosci. Biobehav. R. 25, 355–373.10.1016/S0149-7634(01)00019-7Search in Google Scholar

Fuchigami, T., Okubo, O., Ejiri, K., Fujita, Y., Kohira, R., Noguchi, Y., Fuchigami, S., Hiyoshi, K., Nishimura, A., and Haradag, K. (1995). Developmental changes in P300 wave elicited during two different experimental conditions. Pediatr. Neurol. 13, 25–28.10.1016/0887-8994(95)00086-USearch in Google Scholar PubMed

Fuster, J.M. (1997). Network Memory. Trends Neurosci. 20, 451–459.10.1016/S0166-2236(97)01128-4Search in Google Scholar PubMed

Fuster, J.M. (1999). Cortical dynamics of memory. Int. J. PsychoPhysiol. 35, 155–164.10.1016/S0167-8760(99)00050-1Search in Google Scholar

Fuster, J.M. (2007). Cortical memory. Scholarpedia, p. 11609.10.4249/scholarpedia.1644Search in Google Scholar

Fuster, J.M. and Alexander, G.E. (1971). Neuron activity related to short-term memory. Science 173, 652–654.10.1126/science.173.3997.652Search in Google Scholar PubMed

Fuster, J.M. and Bressler, S.L. (2014). Past makes future: role of pFC in prediction. J. Cognitive Neurosci. 27, 639–654.10.1162/jocn_a_00746Search in Google Scholar

Fuster, J.M. and Jervey, J.P. (1981). Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955.10.1126/science.7233192Search in Google Scholar PubMed

Fuster, J.M. and Jervey, J.P. (1982). Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J. Neurosci. 2, 361–375.10.1523/JNEUROSCI.02-03-00361.1982Search in Google Scholar

Gathercole, S.E. (1998). The development of memory. J. Child Psychol. Psyc. 39, 3–27.10.1017/S0021963097001753Search in Google Scholar

Gathercole, S.E. and Pickering, S. (2000). Assessment of working memory in six and seven years old children. J. Educ. Psychol. 92, 377–390.10.1037/0022-0663.92.2.377Search in Google Scholar

Gathercole, S.E., Pickering, S.J., Ambridge, B., and Wearing H. (2004). The structure of working memory from 4 to 15 years of age. Dev. Psychol. 40, 177–190.10.1037/0012-1649.40.2.177Search in Google Scholar PubMed

Giedd, J.N., Lalonde, F.M., Celano, M.J., White, S.L., Wallace, G.L., Lee, N.R., and Lenroot, R.K. (2009). Anatomical brain magnetic resonance imaging of typically developing children and adolescents. J. Am. Acad. Child Adolesc. Psych. 48, 465–70.10.1097/CHI.0b013e31819f2715Search in Google Scholar

Goldman-Rakic, P.S. (1971). Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Exp. Neurol. 32, 366–387.10.1016/0014-4886(71)90005-7Search in Google Scholar PubMed

Goldman-Rakic, P.S. (1995). Cellular basis of working memory. Neuron 14, 477–485.10.1016/0896-6273(95)90304-6Search in Google Scholar PubMed

Gómez, C.M. and Flores, A. (2011). A neurophysiological evaluation of a cognitive cycle in humans. Neurosci. Biobehav. Rev. 35, 452–461.10.1016/j.neubiorev.2010.05.005Search in Google Scholar PubMed

Gómez, C.M., Flores, A., Ledesma, A., Digiacomo, M.R., and González-Rosa, J. (2007). Fronto-parietal networks activation during the contingent negative period. Brain Res. Bull. 73, 40–47.10.1016/j.brainresbull.2007.01.015Search in Google Scholar PubMed

Gómez, C.M., Flores, A., Ledesma, A., Digiacomo, M.R., and González-Rosa, J. (2008). P3a and P3b components associated to the neurocognitive evaluation of invalidly cued targets. Neurosci. Lett. 430, 181–185.10.1016/j.neulet.2007.10.049Search in Google Scholar PubMed

Gómez, C.M., Rodríguez-Martínez, E.I., Fernández, A., Maestú, F, Poza, J., and Gómez, C. (2017). Absolute power spectral density changes in the magnetoencephalographic activity during the transition from childhood to adulthood. Brain Topogr. 30, 87–97.10.1007/s10548-016-0532-0Search in Google Scholar PubMed

Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 7, 83.10.3389/fnint.2013.00083Search in Google Scholar PubMed PubMed Central

Harmony, T., Marosi, E., Becker, J., Reyes, A., Rodríguez, M., Bernal, J., Hinojosa, G., and Fernández, T. (1992). Correlación entre el análisis de frecuencias del EEG y el rendimiento en pruebas de atención selectiva y memoria en niños. Revista latina de Pensamiento y Lenguaje 1, 96–103.Search in Google Scholar

Hillyard, S. and Picton, T.W. (1987). Electrophysiology of Cognition. Handbook of Physiology Section 1: The Nervous System. Vol. 5, Higher Functions of the Brain. F. Plum, ed. (Bethesda, MD: American Physiological Society), pp. 519–584.10.1002/cphy.cp010513Search in Google Scholar

Hillyard, S.A. and Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proc. Natl. Acad. Sci. USA 95, 781–787.10.1073/pnas.95.3.781Search in Google Scholar PubMed PubMed Central

Hitch, G.J., Woodin, M.E., and Baker, S. (1989). Visual and phonological components of working memory in children. Mem. Cognit. 17, 175–185.10.3758/BF03197067Search in Google Scholar PubMed

Hoekema, R., Wieneke, G.H., Leijten, F.S.S., and Van Veelen, C.W.M. (2003). Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr. 16, 29–38.10.1023/A:1025606415858Search in Google Scholar PubMed

Hopf, J., Luck, S.J., Girelli, M., Hagner, T., Mangun, G.R., Scheich, H., and Heinze, H.J. (2000). Neural sources of focused attention in visual search. Cereb. Cortex 10, 1233–1241.10.1093/cercor/10.12.1233Search in Google Scholar

Huttenlocher, P.R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia 28, 517–527.10.1016/0028-3932(90)90031-ISearch in Google Scholar PubMed

Hyun, J., Woodman, G.F., Vogel, E.K., Hollingworth, A., and Luck, S.J. (2009). The comparison of visual working memory representations with perceptual inputs.J. Exp. Psychol. Hum. Percept Perform 35, 1140–1160.10.1037/a0015019Search in Google Scholar PubMed PubMed Central

Jarvis, H.L. and Gathercole, S.E. (2003). Verbal and non-verbal working memory and achievements on national curriculum tests at 11 and 14 years of age. Educ. Child Psychol. 20, 123–140.10.53841/bpsecp.2003.20.3.123Search in Google Scholar

Johnson, R. and Donchin, E. (1982). Sequential expectancies and decision-making in a changing environment: an electrophysiological approach. Psychophysiology 19, 183–200.10.1111/j.1469-8986.1982.tb02545.xSearch in Google Scholar PubMed

Johnson, J., Fabian, V., and Pascual-Leone, J. (1989). Quantitative hardware stages that constrain language development. Hum. Dev. 32, 245–271.10.1159/000276477Search in Google Scholar

Jonkman, L.M., Lansbergen, M., and Stauder, J.E.A. (2003). Developmental differences in behavioral and event-related brain responses associated with response preparation and inhibition in a go/nogo task. Psychophysiology 40, 752–761.10.1111/1469-8986.00075Search in Google Scholar PubMed

Kemps, E., Rammelaere, S.D., and Desmet, T. (2000). The development of working memory: exploring the complementary of two models. J. Exp. Child Psychol. 77, 89–109.10.1006/jecp.2000.2589Search in Google Scholar PubMed

Klingberg, T. (2006). Developmental of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia 44, 2171–2177.10.1016/j.neuropsychologia.2005.11.019Search in Google Scholar PubMed

Klingberg, T. (2016). Neural basis of cognitive training and development. Curr. Op. Behav. Sci. 10, 97–101.10.1016/j.cobeha.2016.05.003Search in Google Scholar

Klingberg, T., Forssberg, H., and Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J. Cognitive Neurosci. 14, 1–10.10.1162/089892902317205276Search in Google Scholar PubMed

Kolev, V. and Yordanova, J. (1997). Analysis of phase-locking is informative for studying event-related EEG activity. Biol. Cybern. 76, 229–235.10.1007/s004220050335Search in Google Scholar PubMed

Kolev, V., Yordanova, J., and Silyamova, V. (1994). The relation between the endogenous P3 wave and evoked frequency components in children. J. Psychophysiol. 3, 277.Search in Google Scholar

Krause, C.M., Boman, P.A., Sillanmäki, L., Varho, T., and Holopainen, I.E. (2008). Brain oscillatory EEG event-related desynchronization (ERD) and synchronization (ERS) responses during an auditory memory task are altered in children with epilepsy. Seizure 17, 1–10.10.1016/j.seizure.2007.05.015Search in Google Scholar PubMed

Kwon, H., Reiss, A.L., and Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proc. Natl. Acad. Sci. USA 99, 13336–13341.10.1073/pnas.162486399Search in Google Scholar

Leavitt, M.L., Diego Mendoza-Halliday, D., and Martinez-Trujillo, J.C. (2017). Sustained activity encoding working memories: not fully distributed. Trends Neurosci. 40, 328–346.10.1016/j.tins.2017.04.004Search in Google Scholar PubMed

Lee, S.H. and Baker, C.I. (2016). Multi-voxel decoding and the topography of maintained information during visual working memory. Front. Systems Neurosci. 10, 2.10.3389/fnsys.2016.00002Search in Google Scholar

Linares, R., Bajo, M.T., and Pelegrina, S. (2016). Age-related differences in working memory updating components. J. Exp. Child Psychol. 147, 39–52.10.1016/j.jecp.2016.02.009Search in Google Scholar PubMed

Logie, R.H. (1995). Visuo-Spatial Working Memory (Hove: Lawrence Erlbaum Associates), p. 176.Search in Google Scholar

Logie, R.H., Zucco, G.M., and Baddeley, A.D. (1990). Interference with visual short-term memory. Acta Psychol. 75, 55–74.10.1016/0001-6918(90)90066-OSearch in Google Scholar

Lovstad, M., Funderud, I., Lindgren, M., Endestad, T., Due-Tønnessen, P., Meling, T., Voytek, B., Knight, R.T., and Solbakk, A.K. (2012). Contribution of subregions of human frontal cortex to novelty processing. J. Cognit. Neurosci. 24, 378–395.10.1162/jocn_a_00099Search in Google Scholar PubMed PubMed Central

Löw, A., Rockstroh, B., Cohen, R., Hauk, O., Berg, P., and Maier, W. (1999). Determining working memory from ERP topography. Brain Topogr. 12, 39–47.10.1023/A:1022229623355Search in Google Scholar PubMed

Luciana, M., Conklin, H.M., Hooper, C.J., Yarger, R.S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Dev. 76, 697–712.10.1111/j.1467-8624.2005.00872.xSearch in Google Scholar PubMed

Luck, S.J. and Hillyard, S.A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. J. Exp. Psychol. Hum. 20, 1000–1014.10.1037/0096-1523.20.5.1000Search in Google Scholar

Luck, S.J. and Vogel, E.K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400.10.1016/j.tics.2013.06.006Search in Google Scholar PubMed

Luck, S.J., Woodman, G.F., and Vogel, E.K. (2000). Event-related potential studies of attention. Trends Cogn. Sci. 4, 432–440.10.1016/S1364-6613(00)01545-XSearch in Google Scholar PubMed

Luria, R., Balaban, H., Awh, E., and Vogel E.K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neurosci Biobehav Rev. 62, 100–108.10.1016/j.neubiorev.2016.01.003Search in Google Scholar PubMed

Määttä, S., Saavalainen, P., Könönen, M., Pääkkönen, A., Muraja-Murro, A., and Partanen, J. (2005). Processing of highly novel auditory events in children and adults: an event-related potential study. Neuroreport 16, 1443–1446.10.1097/01.wnr.0000177014.36979.3fSearch in Google Scholar PubMed

Mangun, G.R. and Hillyard, S.A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J. Exp. Psychol. Hum. 17, 1057–1074.10.1037/0096-1523.17.4.1057Search in Google Scholar

McCollough, A.W., Machizawa, M.G., and Vogel, E.K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex 43, 77–94.10.1016/S0010-9452(08)70447-7Search in Google Scholar PubMed

McElree, B. (2006). Accessing recent events. Psychol. Learn. Motiv. 46:155–200.10.1016/S0079-7421(06)46005-9Search in Google Scholar

Mecklinger, A. and Pfeifer, E. (1996). Event-related potentials reveal topographical and temporal distinct neuronal activation patterns for spatial and object working memory. Cognitive Brain Res. 4, 211–224.10.1016/S0926-6410(96)00034-1Search in Google Scholar

Miles, C., Morgan, M.J., Milne, A.B., and Morris, E.D.M. (1996). Developmental and individual differences in visual memory span. Curr. Psychol. 15, 53–67.10.1007/BF02686934Search in Google Scholar

Myers, N.E., Stokes, M.G., and Nobre, A.C. (2017). Prioritizing information during working memory: beyond sustained internal attention. Trends Cogn. Sci. 21, 449–461.10.1016/j.tics.2017.03.010Search in Google Scholar PubMed

Oades, R.D., Ditteann, B.A., and Zerbin, D. (1997). Development and topography of auditory event-related potentials (ERP): mismatch and processing negativity in individuals 8-22 years of age. Psychophysiology 34, 677–693.10.1111/j.1469-8986.1997.tb02143.xSearch in Google Scholar PubMed

Oberauer, K. (2013). The focus of attention in working memory – from metaphors to mechanisms. Front. Hum. Neurosci. 7, 673.10.3389/fnhum.2013.00673Search in Google Scholar PubMed

Ostby, Y., Tamnes, C.K., Fjell, A.M., and Walhovd, K.B. (2011). Morphometry and connectivity of the fronto-parietal verbal working memory network in development. Neuropsychologia 49, 3854–3862.10.1016/j.neuropsychologia.2011.10.001Search in Google Scholar PubMed

Pascual-Leone, J. and Baillargeon, R. (1994). Developmental measurement of mental attention. Int. J. Behav. Dev. 17, 161–200.10.1177/016502549401700110Search in Google Scholar

Pascual-Marqui R.D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 24, 5–12.Search in Google Scholar PubMed

Patterson, J.V., Pratt, H., and Starr, A. (1991). Event-related potential correlates of the serial position effect in short-term memory. Electroen. Clin. Neurophysiol. 78, 424–437.10.1016/0013-4694(91)90060-HSearch in Google Scholar

Paule, M.G., Bushnell, P.J., Maurissen, J.P.J., Wenger, G.R., Buccafusco, J.J., Chelonis, J.J., and Elliott, R. (1998). The use of delayed matching-to-sample procedures in studies of short-term memory in animals and humans. Neurotoxicol. Teratol. 20, 493–502.10.1016/S0892-0362(98)00013-0Search in Google Scholar PubMed

Paus, T., Keshavan, M., and Giedd, J.N. (2008). Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 9, 947–57.10.1038/nrn2513Search in Google Scholar PubMed PubMed Central

Pelegrina, S., Lechuga, M.T., García-Madruga, J.A., Elosúa, M.R., Macizo, P., Carreiras, M., Fuentes, L.J., and Bajo, M.T. (2015). Normative data on the n-back task for children and young adolescents. Front. Psychol. 6, 1544.10.3389/fpsyg.2015.01544Search in Google Scholar PubMed PubMed Central

Perlman, S.B., Huppert, T.J., and Luna, B. (2016). Functional near-infrared spectroscopy evidence for development of prefrontal engagement in working memory in early through middle childhood. Cereb. Cortex 26, 2790–2799.10.1093/cercor/bhv139Search in Google Scholar PubMed PubMed Central

Pickering, S.J. (2001). Cognitive approaches to the fractionation of visuo-spatial working memory. Cortex 37, 457–473.10.1016/S0010-9452(08)70587-2Search in Google Scholar PubMed

Pickering, S.J. and Gathercole, S.E. (2001). Working Memory Test Battery for Children (WMTB-C) (London: Pearson).Search in Google Scholar

Pickering, S.J., Gathercole, S.E., and Peaker, S.M. (1998). Verbal and visuo-spatial short-term memory in children: evidence for common and distinct mechanisms. Mem. Cognit. 26, 1117–1130.10.3758/BF03201189Search in Google Scholar

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148.10.1016/j.clinph.2007.04.019Search in Google Scholar PubMed

Raghavachari, S., Kahana, M.J., Rizzuto, D.S., Caplan, J.B., Kirschen, M.P., Bourgeois, B., Madsen, J.R., and Lisman, J.E. (2001). Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183.10.1523/JNEUROSCI.21-09-03175.2001Search in Google Scholar PubMed

Reynolds, G.D. and Romano, A.C. (2016). The development of attention systems and working memory in infancy. Front. Syst. Neurosci. 10, 15.10.3389/fnsys.2016.00015Search in Google Scholar PubMed

Rodríguez-Martínez, E.I., Barriga-Paulino, C.I., Rojas-Benjumea, M.A., and Gómez, C.M. (2013). Spontaneous theta rhythm and working memory co-variation during child development. Neurosci. Lett. 550, 134–138.10.1016/j.neulet.2013.06.054Search in Google Scholar PubMed

Rodríguez-Martínez, E.I., Barriga-Paulino, C.I., Rojas-Benjumea, M.A., and Gómez, C.M. (2014). Co-maturation of theta and low-beta rhythms during child development. Brain Topogr. 28, 250–260.10.1007/s10548-014-0369-3Search in Google Scholar PubMed

Rojas-Benjumea, M.A., Barriga-Paulino, C.I., Rodriguez-Martinez, E.I., and Gomez, C.M. (2015). Development of behavioral parameters and ERPs in a novel-target visual detection paradigm in children, adolescents and young adults. Behav. Brain Funct. 11, 22.10.1186/s12993-015-0067-7Search in Google Scholar

Ross-Sheehy, S., Oakes, L.M., and Luck, S.J. (2010). Exogenous attention influences visual short-term memory in infants. Dev. Sci. 14, 490–501.10.1111/j.1467-7687.2010.00992.xSearch in Google Scholar PubMed

Ruchkin, D.S., Johnson Jr. R., Canoune, H., and Ritter, W. (1990). Short-term memory storage and retention: an event-related brain potential study. Electroen. Clin. Neurophysiol. 76, 419–439.10.1016/0013-4694(90)90096-3Search in Google Scholar

Ruchkin, D.S., Johnson Jr. R., Grafman, J., Canoune, H., and Ritter, W. (1992). Distinctions and similarities among working memory processes: an event-related potential study. Cognitive Brain Res. 1, 53–66.10.1016/0926-6410(92)90005-CSearch in Google Scholar

Ruchkin, D.S., Johnson Jr. R., Grafman, J., Canoune, H., and Ritter, W. (1997). Multiple visuospatial working memory buffers: evidence from spatiotemporal patterns of brain activity. Neuropsychologia 35, 195–209.10.1016/S0028-3932(96)00068-1Search in Google Scholar PubMed

Rugg, M.D. (1984a). Event-related potentials and the phonological processing of words and non-words. Neuropsychologia 22, 435–443.10.1016/0028-3932(84)90038-1Search in Google Scholar

Rugg, M.D. (1984b). Event-related potentials in phonological matching tasks. Brain Lang. 23, 225–240.10.1016/0093-934X(84)90065-8Search in Google Scholar

Salazar, R.F., Dotson, N.M., Bressler, S.L., and Gray, C.M. (2012). Content specific fronto-parietal synchronization during visual working memory. Science 338, 1097–1100.10.1126/science.1224000Search in Google Scholar PubMed PubMed Central

Sander, M.C., Werkle-Bergner, M., and Lindenberger, U. (2011). Contralateral delay activity reveals life-span age differences in top-down modulation of working memory contents. Cereb. Cortex 21, 2809–2819.10.1093/cercor/bhr076Search in Google Scholar PubMed

Sauseng, P., Klimesch, W., Heise, K., Gruber, W., Holz, E.M., Karim, A.A., Glennon, M., Gerloff, C., Birbaumer, N., and Hummel, F.C. (2009). Brain oscillatory substrates of human visual short-term memory capacity. Curr. Biol. 19, 1846–1852.10.1016/j.cub.2009.08.062Search in Google Scholar PubMed

Sauseng, P., Griesmayr, B., Freunberger, R., and Klimesch, W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 34, 1015–1022.10.1016/j.neubiorev.2009.12.006Search in Google Scholar PubMed

Schweinsburg, A.D., Nagel, B.J., and Tapert, S.F. (2005). fMRI reveals alternation of spatial working memory networks across adolescence. J. Int. Neuropsych. Soc. 11, 631–644.10.1017/S1355617705050757Search in Google Scholar PubMed PubMed Central

Segalowitz, S.J., Santesso, D.L., and Jetha, M.K. (2010). Electrophysiological changes during adolescence: a review. Brain Cognit. 72, 86–100.10.1016/j.bandc.2009.10.003Search in Google Scholar PubMed

Simmering, V.R. and Perone, S. (2013). Working memory capacity as a dynamic process. Front. Psychol. 3, 567.10.3389/fpsyg.2012.00567Search in Google Scholar PubMed

Shimi, A., Kuo, B.C., Astle, D.E., Nobre, A.C., and Scerif, G. (2014). Age group and individual differences in attentional orienting dissociate neural mechanisms of encoding and maintenance in visual STM. J. Cognitive Neurosci. 26, 864–877.10.1162/jocn_a_00526Search in Google Scholar

Shimi, A., Nobre, A.C., and Scerif, G. (2015). ERP markers of target selection discriminate children with high vs. low working memory capacity. Front. Systems Neurosci. 9, 153.Search in Google Scholar

Spronk, M., Vogel, E.K., and Jonkman, L.M. (2013). No behavioral or ERP evidence for a developmental lag in visual working memory capacity or filtering in adolescents and adults with ADHD. PLoS One 8, e62673.10.1371/journal.pone.0062673Search in Google Scholar PubMed

Squires, K.C., Wickens, C., Squires, N.K., and Donchin, E. (1976). Effect of stimulus sequence on waveform of cortical event-related potential. Science 193, 1142–1146.10.1126/science.959831Search in Google Scholar PubMed

Stewart, L. and Pascual-Leone, J. (1992). Mental capacity constraints and the development of moral reasoning. J. Exp. Child Psychol. 54, 251–287.10.1016/0022-0965(92)90020-7Search in Google Scholar

Stige, S., Fjell, A.M., Smith, L., Lindgren, M., and Walhovd, K.B. (2007). The development of visual P3a and P3b. Dev. Neuropsychol. 32, 563–584.10.1080/87565640701361096Search in Google Scholar PubMed

Tamnes, C.K., Walhovd, K.B., Grydeland, H., Holland, D., Østby, Y., Dale, A.M., and Fjell, A.M. (2013). Longitudinal working memory development is related to structural maturation of frontal and parietal cortices. J. Cognitive Neurosci. 25, 1611–1623.10.1162/jocn_a_00434Search in Google Scholar

Tesche, C.D. and Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. USA 97, 919–924.10.1073/pnas.97.2.919Search in Google Scholar

Thomas, K.M. and Nelson, C.A. (1996). Age-related changes in the electrophysiological response to visual stimulus novelty: a topographical approach. Electroen. Clin. Neurophysiol. 98, 294–308.10.1016/0013-4694(95)00280-4Search in Google Scholar

Thomas, K.M., King, S.W., Franzen, P.L., Welsh, T.F., Berkowitz, A.L., Noll, D.C., Birmaher, V., and Casey, B.J. (1999). A developmental functional MRI study of spatial working memory. NeuroImage 10, 327–338.10.1006/nimg.1999.0466Search in Google Scholar PubMed

Todor, J.I. (1979). Developmental differences in motor task performance integration: a test of Pascual-Leone’s theory of constructive operators. J. Exp. Child Psychol. 28, 314–322.10.1016/0022-0965(79)90092-4Search in Google Scholar

Tsujimoto, S., Yamamoto, T., Kawaguchi, H., Koizumi, H., and Sawaguchi, T. (2004). Prefrontal cortical activation associated with working memory in adults and preschool children: an event-related optical topography study. Cereb. Cortex 14, 703–712.10.1093/cercor/bhh030Search in Google Scholar PubMed

Van der Stelt, O., Kok, A., Smulders, F.T.Y., Snel, J., and Gunning, W.B. (1998). Cerebral event-related potentials associated with selective attention to color: developmental changes from childhood to adulthood. Psychophysiology 35, 227–239.10.1111/1469-8986.3530227Search in Google Scholar PubMed

Verleger, R., Jaśkowski, P., and Wascher, E. (2005). Evidence of an integrative role of P3b in linking reaction to perception. J. Psychophysiol. 19, 150.10.1027/0269-8803.19.3.165Search in Google Scholar

Vestergaard, M., Madsen, K.S., Baaré, W.F., Skimminge, A., Ejersbo, L.R., Ramsøy, T.Z., Gerlach, C., Akeson, P., Paulson, O.B., and Jernigan, T.L. (2011). White matter microstructure in superior longitudinal fasciculus associated with spatial working memory performance in children. J. Cognitive. Neurosci. 23, 2135–2146.10.1162/jocn.2010.21592Search in Google Scholar

Wild-Wall, N., Falkenstein, M., and Gajewski, P.D. (2011). Age-related differences in working memory performance in a 2-back task. Front. Psychol. 2, 186.10.3389/fpsyg.2011.00186Search in Google Scholar

Watter, S., Geffen, G.M., and Geffen, L.B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology 38, 998–1003.10.1111/1469-8986.3860998Search in Google Scholar PubMed

Wijers, A.A., Lamain, W., Slopsema, J.S., Mulder, G., and Mulder, L.J.M. (1989). An electrophysiological investigation of the spatial distribution of attention to colored stimuli in focused and divided attention conditions. Biol. Psychol. 29, 213–245.10.1016/0301-0511(89)90021-5Search in Google Scholar PubMed

Wilson, J.T.L., Scott, J.H., and Power, K.G. (1987). Developmental differences in the span of visual memory for pattern. Brit. J. Dev. Psychol. 5, 249–255.10.1111/j.2044-835X.1987.tb01060.xSearch in Google Scholar

Woodman, G.F. and Vogel, E.K. (2008). Selective storage and maintenance of an object’s features in visual working memory. Psychon. Bull. Rev. 15, 223–229.10.3758/PBR.15.1.223Search in Google Scholar PubMed

Yordanova, J. and Kolev, V. (1998). Developmental changes in the theta response system: a single sweep analysis. J. Psychophysiol. 12, 113–126.Search in Google Scholar

Yordanova, J., Devrim, M., Kolev, V., Ademoglu, A., and Demiralp, T. (2000). Multiple time-frequency components account for the complex functional reactivity of P300. Neuroreport 11, 1097–1103.10.1097/00001756-200004070-00038Search in Google Scholar PubMed

Zhou, X., Zhu, D., Katsuki, F., Qi, X.L., Lees, C.J., Bennett, A.J., Salinas, E., Stanford, T.R., and Constantinidis, C. (2014). Age-dependent changes in prefrontal intrinsic connectivity. Proc. Natl. Acad. Sci. USA 111, 3853–3858.10.1073/pnas.1316594111Search in Google Scholar PubMed PubMed Central

Received: 2017-8-23
Accepted: 2017-9-9
Published Online: 2017-11-25
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2017-0073/html
Scroll to top button