Abstract
Tuberous sclerosis complex (TSC) is an auto-somal-dominant inherited condition with an incidence of approximately 1:6000 births, characterised by deregulated mTOR activity with multi-site hamartomas. Subependymal giant cell astrocytomas (SEGA) are one such hamartoma, affecting up to 24% of patients with TSC. Their intraventricular location may lead to life-threatening obstructive hydrocephalus. Current management is hampered by a lack of understanding regarding the natural history, behaviour and growth patterns of SEGA. We review the current literature to summarise what is known about SEGA in the following areas: (1) diagnostic criteria, (2) prevalence, (3) origin, (4) imaging characteristics, (5) growth rate, (6) genotype-phenotype correlation, (7) congenital SEGA and (8) SEGA as a marker of severity of other TSC manifestations.
References
Adriaensen, M.E., Schaefer-Prokop, C.M., Stijnen, T., Duyndam, D.A.C., Zonnenberg, B.A., and Prokop, M. (2009). Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur. J. Neurol. 16, 691–696.10.1111/j.1468-1331.2009.02567.xSearch in Google Scholar
Adriaensen, M.E., Zonnenberg, B.A., and De Jong, P.A. (2014). Natural history and CT scan follow-up of subependymal giant cell tumors in tuberous sclerosis complex patients. J. Clin. Neurosci. 21, 939–941.10.1016/j.jocn.2013.08.022Search in Google Scholar PubMed
Boorjian, S.A., Sheinin, Y., Crispen, P.L., Lohse, C.M., Kwon, E.D., and Leibovich, B.C. (2008). Hormone receptor expression in renal angiomyolipoma: clinicopathologic correlation. Urology. 72, 927–932.10.1016/j.urology.2008.01.067Search in Google Scholar PubMed
Chan, J.A., Zhang, H., Roberts, P.S., Jozwiak, S., Wieslawa, G., Lewin-Kowalik, J., Kotulska, K., and Kwiatkowski, D.J. (2004). Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J. Neuropathol. Exp. Neurol. 63, 1236–1242.10.1093/jnen/63.12.1236Search in Google Scholar PubMed
Chopra, M., Lawson, J.A., Wilson, M., Kennedy, S.E., Taylor, P., Buckley, M.F., Wargon, O., Parasivam, G., Camphausen, C., Yates, D., et al. (2011). An Australian tuberous sclerosis cohort: are surveillance guidelines being met? J. Paediatr. Child Health 47, 711–716.10.1111/j.1440-1754.2011.02038.xSearch in Google Scholar
Clarke, M.J., Foy, A.B., Wetjen, N., and Raffel, C. (2006). Imaging characteristics and growth of subependymal giant cell astrocytomas. Neurosurg. Focus 20, E5.10.3171/foc.2006.20.1.6Search in Google Scholar PubMed
Cuccia, V., Zuccaro, G., Sosa, F., Monges, J., Lubienieky, F., and Taratuto, A.L. (2003). Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv. Syst. 19, 232–243.10.1007/s00381-002-0700-2Search in Google Scholar
Curatolo, P., Bombardieri, R., and Jozwiak, S. (2008). Tuberous sclerosis. Lancet 372, 657–668.10.1016/S0140-6736(08)61279-9Search in Google Scholar PubMed
Dabora, S.L., Jozwiak, S., Franz, D.N., Roberts, P.S., Nieto, A., Chung, J., Choy, Y.S., Reeve, M.P., Thiele, E., Egelhoff, J.C., et al. (2001). Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am. J. Hum. Genet. 68, 64–80.10.1086/316951Search in Google Scholar
Ewalt, D.H., Sheffield, E., Sparagana, S.P., Delgado, M.R., and Roach, E.S. (1998). Renal lesion growth in children with tuberous sclerosis complex. J. Urol. 160, 141–145.10.1016/S0022-5347(01)63072-6Search in Google Scholar PubMed
Franz, D.N., Belousova, E., Sparagana, S., Bebin, E.M., Frost, M., Kuperman, R., Witt, O., Kohrman, M.H., Flamini, J.R., Wu, J.Y., et al. (2013). Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 381, 125–132.10.1016/S0140-6736(12)61134-9Search in Google Scholar PubMed
Fujiwara, S., Takaki, T., Hikita, T., and Nishio, S. (1989). Subependymal giant-cell astrocytoma associated with tuberous sclerosis. Do subependymal nodules grow? Childs Nerv. Syst. 5, 43–44.10.1007/BF00706748Search in Google Scholar PubMed
Goh, S., Butler, W., and Thiele, E.A. (2004). Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 63, 1457–1461.10.1212/01.WNL.0000142039.14522.1ASearch in Google Scholar PubMed
Grajkowska, W., Kotulska, K., Jurkiewicz, E., Roszkowski, M., Daszkiewicz, P., Jóźwiak, S., and Matyja, E. (2011). Subependymal giant cell astrocytomas with atypical histological features mimicking malignant gliomas. Folia Neuropathol. 49, 39–46.Search in Google Scholar PubMed
Henske, E.P., Wessner, L.L., Golden, J., Scheithauer, B.W., Vortmeyer, A.O., Zhuang, Z., Klein-Szanto, A.J., Kwiatkowski, D.J., and Yeung, R.S. (1997). Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am. J. Pathol. 151, 1639–1647.Search in Google Scholar PubMed
Jiang, T., Jia, G., Ma, Z., Luo, S., and Zhang, Y. (2011). The diagnosis and treatment of subependymal giant cell astrocytoma combined with tuberous sclerosis. Childs Nerv. Syst. 27, 55–62.10.1007/s00381-010-1159-1Search in Google Scholar PubMed
Jóźwiak, S., Kwiatkowski, D., Kotulska, K., Larysz-Brysz, M., Lewin-Kowalik, J., Grajkowska, W., and Roszkowski, M. (2004). Tuberin and hamartin expression is reduced in the majority of subependymal giant cell astrocytomas in tuberous sclerosis complex consistent with a two-hit model of pathogenesis. J. Child Neurol. 19, 102–106.10.1177/08830738040190020401Search in Google Scholar PubMed
Jóźwiak, S., Nabbout, R., and Curatolo, P., participants of the TSC Consensus Meeting for SEGA and Epilepsy Management. (2013). Management of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC): clinical recommendations. Eur. J. Paediatr. Neurol. 17, 348–352.10.1016/j.ejpn.2012.12.008Search in Google Scholar PubMed
Kingswood, J.C., D’Augères, G.B., Belousova, E., Ferreira, J.C., Carter, T., Castellana, R., Cottin, V., Curatolo, P., Dahlin, M., de Vries, P.J., et al. (2017). TuberOus SClerosis registry to increase disease Awareness (TOSCA) – baseline data on 2093 patients. Orphanet J. Rare Dis. 12, 2.10.1186/s13023-016-0553-5Search in Google Scholar PubMed PubMed Central
Kothare, S.V., Singh, K., Chalifoux, J.R., Staley, B.A., Weiner, H.L., Menzer, K., and Devinsky, O. (2014). Severity of manifestations in tuberous sclerosis complex in relation to genotype. Epilepsia 55, 1025–1029.10.1111/epi.12680Search in Google Scholar PubMed
Kotulska, K., Borkowska, J., Mandera, M., Roszkowski, M., Jurkiewicz, E., Grajkowska, W., Bilska, M., and Jóźwiak, S. (2014a). Congenital subependymal giant cell astrocytomas in patients with tuberous sclerosis complex. Childs Nerv. Syst. 30, 2037–2042.10.1007/s00381-014-2555-8Search in Google Scholar PubMed PubMed Central
Kotulska, K., Borkowska, J., Roszkowski, M., Mandera, M., Daszkiewicz, P., Drabik, K., Jurkiewicz, E., Larysz-Brysz, M., Nowak, K., Grajkowska, W., et al. (2014b). Surgical treatment of subependymal giant cell astrocytoma in tuberous sclerosis complex patients. Pediatr. Neurol. 50, 307–312.10.1016/j.pediatrneurol.2013.12.004Search in Google Scholar PubMed
Krueger, D.A., Care, M.M., Agricola, K., Tudor, C., Mays, M., and Franz, D.N. (2013). Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology 80, 574–580.10.1212/WNL.0b013e3182815428Search in Google Scholar PubMed PubMed Central
Lagos, J.C. and Gomez, M.R. (1967). Tuberous sclerosis: reappraisal of a clinical entity. Mayo Clinic Proc. 42, 26–49.Search in Google Scholar
Louis, D.N., Ohgaki, H., Wiestler, O.D., and Cavenee, W.K. (2016). World Health Organisation Classification of Tumours of the Central Nervous System. 4th ed. (France: International Agency for Research on Cancer).Search in Google Scholar
Martin, K.R., Zhou, W., Bowman, M.J., Shih, J., Au, K.S., Dittenhafer-Reed, K.E., Sisson, K.A., Koeman, J., Weisenberger, D.J., Cottingham, S.L., et al. (2017). The genomic landscape of tuberous sclerosis complex. Nat. Commun. 8, 15816.10.1038/ncomms15816Search in Google Scholar PubMed PubMed Central
Menor, F., Marti-Bonmati, L., Mulas, F., Poyatos, C., and Cortina, H. (1992). Neuroimaging in tuberous sclerosis: a clinicoradiological evaluation in pediatric patients. Pediatr. Radiol. 22, 485–489.10.1007/BF02012989Search in Google Scholar PubMed
Moavero, R., Coniglio, A., Garaci, F., and Curatolo, P. (2013). Is mTOR inhibition a systemic treatment for tuberous sclerosis? Ital. J. Pediatr. 39, 57.10.1186/1824-7288-39-57Search in Google Scholar PubMed PubMed Central
Nabbout, R., Santos, M., Rolland, Y., Delalande, O., Dulac, O., and Chiron, C. (1999). Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis. J. Neurol. Neurosurg. Psychiatry 66, 370–375.10.1136/jnnp.66.3.370Search in Google Scholar PubMed PubMed Central
Northrup, H. and Krueger, D.A., and on behalf of the International Tuberous Sclerosis Complex Concensus Group. (2013). Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr. Neurol. 49, 243–254.10.1016/j.pediatrneurol.2013.08.001Search in Google Scholar PubMed PubMed Central
O’Callaghan, F.J.K., Martyn, C.N., Renowden, S., Noakes, M., Presdee, D., and Osborne, J.P. (2008). Subependymal nodules, giant cell astrocytomas and the tuberous sclerosis complex: a population based study. Arch. Dis. Child. 93, 751–754.10.1136/adc.2007.125880Search in Google Scholar PubMed
Osborne, J.P., Fryer, A., and Webb, D. (1991). Epidemiology of tuberous sclerosis. Ann. N. Y. Acad. Sci. 615, 125–127.10.1111/j.1749-6632.1991.tb37754.xSearch in Google Scholar PubMed
Park, K.J., Kano, H., Kondziolka, D., Niranjan, A., Flickinger, J.C., and Lunsford, L.D. (2011). Gamma knife surgery for subependymal giant cell astrocytomas. J. Neurosurg. 114, 808–813.10.3171/2010.9.JNS10816Search in Google Scholar PubMed
Raju, G.P., Urion, D.K., and Sahin, M. (2007). Neonatal subependymal giant cell astrocytoma: new case and review of literature. Pediatr. Neurol. 36, 128–131.10.1016/j.pediatrneurol.2006.08.009Search in Google Scholar PubMed
Roth, J., Roach, E.S., Bartels, U., Jóźwiak, S., Koenig, M.K., Weiner, H.L., Franz, D.N., and Wang, H.Z. (2013). Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the international tuberous sclerosis complex consensus conference 2012. Pediatr. Neurol. 49, 439–444.10.1016/j.pediatrneurol.2013.08.017Search in Google Scholar PubMed
Russell, D.S., Rubenstein, L.J., and Lumsden, C.E. (1959). Tuberose Sclerose (Bourneville’s disease), Subependymal Giant-Cell Astrocytomas: Tuberose Sclerosis, Spongio Neuroblastoma and Tuberose Sclerosis. Pathology of Tumours of the Nervous System. D.S. Russell and L.J. Rubenstein, eds. (London, UK: Edward Arnold), pp. 29–30, 105–106, 169.Search in Google Scholar
Torres, O.A., Roach, E.S., Delgado, M.R., Sparagana, S.P., Sheffield, E., Swift, D., and Bruce, D. (1998). Early diagnosis of subependymal giant cell astrocytoma in patients with tuberous sclerosis. J. Child Neurol. 13, 173–177.10.1177/088307389801300405Search in Google Scholar PubMed
Tsai, J.D., Wei, C.C., Tsao, T.F., Hsiao, Y.P., Tsai, H.J., Yang, S.H., Tsai, M.L., and Sheu, J.N. (2016). Association between the growth rate of subependymal giant cell astrocytoma and age in patients with tuberous sclerosis complex. Childs Nerv. Syst. 32, 89–95.10.1007/s00381-015-2947-4Search in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Accelerated aging and aging process in the brain
- Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase
- The neurophysiology of working memory development: from childhood to adolescence and young adulthood
- Mothering under the influence: how perinatal drugs of abuse alter the mother-infant interaction
- The natural history of subependymal giant cell astrocytomas in tuberous sclerosis complex: a review
- Why do herpes simplex encephalitis and semantic dementia show a different pattern of semantic impairment in spite of their main common involvement within the anterior temporal lobes?
- Regenerative potential of secretome from dental stem cells: a systematic review of preclinical studies
- Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy
- Population-based differences in immune system response contribute to an increased risk of schizophrenia in African migrants?
Articles in the same Issue
- Frontmatter
- Accelerated aging and aging process in the brain
- Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase
- The neurophysiology of working memory development: from childhood to adolescence and young adulthood
- Mothering under the influence: how perinatal drugs of abuse alter the mother-infant interaction
- The natural history of subependymal giant cell astrocytomas in tuberous sclerosis complex: a review
- Why do herpes simplex encephalitis and semantic dementia show a different pattern of semantic impairment in spite of their main common involvement within the anterior temporal lobes?
- Regenerative potential of secretome from dental stem cells: a systematic review of preclinical studies
- Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy
- Population-based differences in immune system response contribute to an increased risk of schizophrenia in African migrants?