Abstract
One of the approaches to the research of the problem of aging is the study of genetic pathologies leading to accelerated aging, such as the Hutchinson-Gilford progeria syndrome, Werner syndrome, and Down syndrome. Probably, this approach can be used in an attempt to understand the neuronal mechanisms underlying normal and pathological brain aging. The analysis of the current state of scientific knowledge about these pathologies shows that in the Hutchinson-Gilford progeria and Werner syndrome, the rate of brain aging is significantly lower than the rate of whole body aging, whereas in Down syndrome, the brain ages faster than other organs due to amyloid-beta accumulation and chronic oxidative stress in the brain tissue. The main point of a previously proposed hypothesis is that the aging of higher animals and humans is associated with an increased level of reactive oxygen species in mitochondria with age, which activates apoptosis, thus reducing the number of functioning cells.
Acknowledgments
Our work receives financial support from the Russian Science Foundation (projects no. 14-24-00107, sections ‘Normal Aging’, and no. 16-15-10108, other sections).
References
Allsopp, R.C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E.V., Futcher, A.B., Greider, C.W., and Harley, C.B. (1992). Telomere length predicts replicative capacity of human fibroblasts, Proc. Natl. Acad. Sci. USA 89, 10114–10118.10.1073/pnas.89.21.10114Search in Google Scholar
An, S. and Jang, Y. (2016). The role of social capital in the relationship between physical constraint and mental distress in older adults: a latent interaction model. Aging Ment. Health 4, 1–5.10.1080/13607863.2016.1247431Search in Google Scholar
Baek, J.H., Schmidt, E., Viceconte, N., Strandgren, C., Pernold, K., Richard, T.J., Van Leeuwen, F.W., Dantuma, N.P., Damberg, P., Hultenby, K., et al. (2015). Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum. Mol. Genet. 24, 1305–1321.10.1093/hmg/ddu541Search in Google Scholar PubMed
Barja, G. and Herrero, A. (2000). Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J. 14, 312–318.10.1096/fasebj.14.2.312Search in Google Scholar PubMed
Bertoni-Freddari, C., Fattoretti, P., Casoli, T., Caselli, U., and Meier-Ruge, W. (1996). Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type. Anal. Quant. Cytol. Histol. 18, 209–213.Search in Google Scholar PubMed
Bishop, N.A., Lu, T., and Yankner, B.A. (2010). Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535.10.1038/nature08983Search in Google Scholar PubMed
Cao, K., Capell, B.C., Erdos, M.R., Djabali, K., and Collins, F.S. (2007). A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc. Natl. Acad. Sci. USA 104, 4949–4954.10.1073/pnas.0611640104Search in Google Scholar
Celsi, F., Ferri, A., Casciati, A., D’Ambrosi, N., Rotilio, G., Costa, A., Volonté, C., and Carrì, M.T. (2004). Overexpression of superoxide dismutase 1 protects against beta-amyloid peptide toxicity: effect of estrogen and copper chelators. Neurochem. Int. 44, 25–33.10.1016/S0197-0186(03)00101-3Search in Google Scholar PubMed
Chan, P.H., Kawase, M., Murakami, K., Chen, S.F., Li, Y., Calagui, B., Reola, L., Carlson, E., and Epstein, C.J. (1998). Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J. Neurosci. 18, 8292–8299.10.1523/JNEUROSCI.18-20-08292.1998Search in Google Scholar PubMed
Corral-Debrinski, M., Horton, T., Lott, M.T., Shoffner, J.M., McKee, A.C., Beal, M.F., Graham, B.H., and Wallace, D.C. (1994). Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23, 471–476.10.1006/geno.1994.1525Search in Google Scholar PubMed
De Stefano, N., Dotti, M.T., Battisti, C., Sicurelli, F., Stromillo, M.L., Mortilla, M., and Federico, A. (2003). MR evidence of structural and metabolic changes in brains of patients with Werner’s syndrome. J. Neurol. 250, 1169–1173.10.1007/s00415-003-0167-4Search in Google Scholar PubMed
Freeman, S.H., Kandel, R., Cruz, L., Rozkalne, A., Newell, K., Frosch, M.P., Hedley-Whyte, E.T., Locascio, J.J., Lipsitz, L.A., and Hyman, B.T. (2008). Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J. Neuropathol. Exp. Neurol. 67, 1205–1212.10.1097/NEN.0b013e31818fc72fSearch in Google Scholar PubMed
Glenner, G.G. and Wong, C.W. (1984). Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135.10.1016/0006-291X(84)91209-9Search in Google Scholar PubMed
Glasson, E.J., Sullivan, S.G., Hussain, R., Petterson, B.A., Montgomery, P.D., and Bittles, A.H. (2002). The changing survival profile of people with Down’s syndrome: implications for genetic counseling. Clin. Genet. 62, 390–393.10.1034/j.1399-0004.2002.620506.xSearch in Google Scholar PubMed
Gordon, L.B., Brown, W.T., and Collins, F.S. (2003). Hutchinson–Gilford Progeria Syndrome, In: GeneReviews®, R.A. Pagon, M.P. Adam, H.H. Ardinger, S.E. Wallace, A. Amemiya, L.J.H. Bean, T.D. Bird, C.T. Fong, H.C. Mefford, R.J.H. Smith, et al., eds. Seattle (WA, USA): University of Washington, Seattle; 1993–2016. Available from http://www.ncbi.nlm.nih.gov/books/NBK1121/.Search in Google Scholar
Graziotto, J.J., Cao, K., Collins, F.S., and Krainc, D. (2012). Rapamycin activates autophagy in Hutchinson–Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders. Autophagy 8, 147–151.10.4161/auto.8.1.18331Search in Google Scholar PubMed PubMed Central
Gulesserian, T., Seidl, R., Hardmeier, R., Cairns, N., and Lubec, G. (2001). Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J. Investig. Med. 49, 41–46.10.2310/6650.2001.34089Search in Google Scholar PubMed
Head, E., Lott, I.T., Patterson, D., Doran, E., and Haier, R.J. (2007). Possible compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: targets for nonpharmacological intervention. J. Alzheimers Dis. 11, 61–76.10.3233/JAD-2007-11110Search in Google Scholar PubMed
Head, E., Lott, I.T., Wilcock, D.M., and Lemere, C.A. (2016). Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr. Alzheimer Res. 13, 18–29.10.2174/1567205012666151020114607Search in Google Scholar PubMed PubMed Central
Horvath, S., Garagnani, P., Bacalini, M.G., Pirazzini, C., Salvioli, S., Gentilini, D., Di Blasio, A.M., Giuliani, C., Tung, S., Vinters, H.V., et al. (2015). Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495.10.1111/acel.12325Search in Google Scholar PubMed PubMed Central
Huang, S., Lee, L., Hanson, N.B., Lenaerts, C., Hoehn, H., Poot, M., Rubin, C.D., Chen, D.F., Yang, C.C., Juch, H., et al. (2006). The spectrum of WRN mutations in Werner syndrome patients. Hum. Mutat. 27, 558–567.10.1002/humu.20337Search in Google Scholar PubMed PubMed Central
Inano, S., Takao, H., Hayashi, N., Abe, O., and Ohtomo, K. (2011). Effects of age and gender on white matter integrity. Am. J. Neuroradiol. 32, 2103–2109.10.3174/ajnr.A2785Search in Google Scholar PubMed PubMed Central
Isaev, N.K., Stelmashook, E.V, Stelmashook, N.N., Sharonova, I.N., and Skrebitsky, V.G. (2013). Brain aging and mitochondria-targeted plastoquinone antioxidants of SkQ-type. Biochemistry (Mosc.) 78, 295–300.10.1134/S0006297913030127Search in Google Scholar PubMed
Isaev, N.K., Stelmashook, E.V., Genrikhs, E.E., Oborina, M.V., Kapkaeva, M.R., and Skulachev, V.P. (2015). Alzheimer’s disease: an exacerbation of senile phenoptosis. Biochemistry (Mosc.) 80, 1578–1581.10.1134/S0006297915120056Search in Google Scholar PubMed
Jeppesen, D.K., Bohr, V.A., and Stevnsner, T. (2011). DNA repair deficiency in neurodegeneration. Prog. Neurobiol. 94, 166–200.10.1016/j.pneurobio.2011.04.013Search in Google Scholar PubMed PubMed Central
Jung, H.J., Coffinier, C., Choe, Y., Beigneux, A.P., Davies, B.S., Yang, S.H., Barnes, R.H. 2nd, Hong, J., Sun, T., Pleasure, S.J., et al. (2012). Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc. Natl. Acad. Sci. USA 109, E423–E431.10.1073/pnas.1111780109Search in Google Scholar PubMed PubMed Central
Jung, H.J., Tu, Y., Yang, S.H., Tatar, A., Nobumori, C., Wu, D., Young, S.G., and Fong, L.G. (2014). New Lmna knock-in mice provide a molecular mechanism for the ‘segmental aging’ in Hutchinson–Gilford progeria syndrome. Hum. Mol. Genet. 23, 1506–1515.10.1093/hmg/ddt537Search in Google Scholar PubMed PubMed Central
Kerbler, G.M., Fripp, J., Rowe, C.C., Villemagne, V.L., Salvado, O., Rose, S., and Coulson, E.J. (2014). Alzheimer’s disease neuroimaging initiative. Basal forebrain atrophy correlates with amyloid βburden in Alzheimer’s disease. Neuroimage Clin. 7, 105–113.10.1016/j.nicl.2014.11.015Search in Google Scholar PubMed PubMed Central
Kruk, P.A., Rampino, N.J., and Bohr, V.A. (1995). DNA damage and repair in telomeres: relation to aging, Proc. Natl. Acad. Sci. USA 92, 258–262.10.1073/pnas.92.1.258Search in Google Scholar PubMed PubMed Central
Kubben, N., Zhang, W., Wang, L., Voss, T.C., Yang, J., Qu, J., Liu, G.H., and Misteli, T. (2016). Repression of the antioxidant NRF2 pathway in premature aging. Cell 165, 1361–1374.10.1016/j.cell.2016.05.017Search in Google Scholar PubMed PubMed Central
Leverenz, J.B. and Raskind, M.A. (1998). Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp. Neurol. 150, 296–304.10.1006/exnr.1997.6777Search in Google Scholar PubMed
Leverenz, J.B., Yu, C.E., and Schellenberg, G.D. (1998). Aging-associated neuropathology in Werner syndrome. Acta Neuropathol. (Berl.) 96, 421–424.10.1007/s004010050914Search in Google Scholar PubMed
Lloret, A., Badia, M.C., Giraldo, E., Ermak, G., Alonso, M.D., Pallardo, F.V., Davies, K.J.A., and Vina, J. (2011). Alzheimer’s amyloid-βtoxicity and tau hyperphosphorylation are linked via RCAN1. J. Alzheimer’s Dis. 27, 701–709.10.3233/JAD-2011-110890Search in Google Scholar PubMed PubMed Central
Lott, I.T. and Head, E. (2005). Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiol. Aging 26, 383–389.10.1016/j.neurobiolaging.2004.08.005Search in Google Scholar PubMed
Louneva, N., Cohen, J. W., Han, L.-Y., Talbot, K., Wilson, R.S., Bennett, D.A., Trojanowski, J.Q., and Arnold, S.E. (2008). Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am. J. Pathol. 173, 1488–1495.10.2353/ajpath.2008.080434Search in Google Scholar PubMed PubMed Central
Lu, P.H., Lee, G.J., Raven, E.P., Tingus, K., Khoo, T., Thompson, P.M., and Bartzokis, G. (2011). Age-related slowing in cognitive processing speed is associated with myelin integrity in a very healthy elderly sample. J. Clin. Exp. Neuropsychol. 33, 1059–1068.10.1080/13803395.2011.595397Search in Google Scholar PubMed PubMed Central
Mori, H., Tomiyama, T., Maeda, N., Ozawa, K., and Wakasa, K. (2003). Lack of amyloid plaque formation in the central nervous system of a patient with Werner syndrome. Neuropathology 23, 51–56.10.1046/j.1440-1789.2003.00474.xSearch in Google Scholar PubMed
Olive, M., Harten, I., Mitchell, R., Beers, J.K., Djabali, K., Cao, K., Erdos, M.R., Blair, C., Funke, B., Smoot, L., et al. (2010). Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging. Arterioscler. Thromb. Vasc. Biol. 30, 2301–2309.10.1161/ATVBAHA.110.209460Search in Google Scholar PubMed PubMed Central
Pannese, E. (2011). Morphological changes in nerve cells during normal aging. Brain Struct. Funct. 216, 85–89.10.1007/s00429-011-0308-ySearch in Google Scholar PubMed
Papa, S. and Skulachev, V.P. (1997). Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell. Biochem. 174, 305–319.10.1023/A:1006873518427Search in Google Scholar PubMed
Payao, S.L., de Labio, R.W., Gatti, L.L., Rigolin, V.O., Bertolucci, P.H., and Smith, Mde. (2004). A Werner helicase polymorphism is not associated with Alzheimer’s disease. J. Alzheimers Dis. 6, 591–594; discussion 673–681.10.3233/JAD-2004-6603Search in Google Scholar PubMed
Peters, A. (2009). The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front. Neuroanat. 3, 11.10.3389/neuro.05.011.2009Search in Google Scholar PubMed PubMed Central
Postiglione, A., Soricelli, A., Covelli, E.M., Iazzetta, N., Ruocco, A., Milan, G., Santoro, L., Alfano, B., and Brunetti, A. (1996). Premature aging in Werner’s syndrome spares the central nervous system. Neurobiol. Aging 17, 325–330.10.1016/0197-4580(96)00033-4Search in Google Scholar PubMed
Rivera-Torres, J., Acin-Perez, R., Cabezas-Sanchez, P., Osorio, F.G., Gonzalez-Gomez, C., Megias, D., Camara, C., Lopez-Otin, C., Enriquez, J.A., Luque-Garcia, J.L., et al. (2013). Identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J. Proteomics 91, 466–477.10.1016/j.jprot.2013.08.008Search in Google Scholar PubMed
Rodrigues, A.N., Coelho, L.C., Goncalves, W.L., Gouvea, S.A., Vasconcellos, M.J., Cunha, R.S., and Abreu, G.R. (2011). Stiffness of the large arteries in individuals with and without Down syndrome. Vasc. Health Risk Manag. 7, 375–381.10.2147/VHRM.S21273Search in Google Scholar PubMed PubMed Central
Rossi, M.L., Ghosh, A.K., and Bohr, V.A. (2010). Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst.) 9, 331–344.10.1016/j.dnarep.2009.12.011Search in Google Scholar PubMed PubMed Central
Saito, A., Hayashi, T., Okuno, S., Ferrand-Drake, M., and Chan, P.H. (2003). Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway. J. Neurosci. 23, 1710–1718.10.1523/JNEUROSCI.23-05-01710.2003Search in Google Scholar PubMed
Schmitt, K., Grimm, A., Kazmierczak, A., Strosznajder, J.B., Gotz, J., and Eckert, A. (2012). Insights into mitochondrial dysfunction: aging, amyloid-β and τ – a deleterious trio. Antioxid. Redox Signal. 16, 1456–1466.10.1089/ars.2011.4400Search in Google Scholar PubMed
Severin, F.F. and Skulachev, V.P. (2009). Programmed cell death as a target to interrupt the aging program. Adv. Gerontol. 22, 37–48.10.1134/S2079057011010139Search in Google Scholar PubMed
Skulachev, V.P. (2012). Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J. Alzheimers Dis. 28, 283–289.10.3233/JAD-2011-111391Search in Google Scholar PubMed
Smith, M.A., Perry, G., Richey, P.L., Sayre, L.M., Anderson, V.E., Beal, M.F., and Kowall, N. (1996). Oxidative damage in Alzheimer’s. Nature 382, 120–121.10.1038/382120b0Search in Google Scholar PubMed
Smith, D.E., Rapp, P.R., McKay, H.M., Roberts, J.A, and Tuszynski, M.H. (2004). Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J. Neurosci. 24, 4373–4381.10.1523/JNEUROSCI.4289-03.2004Search in Google Scholar PubMed PubMed Central
Stanton, L.R. and Coetzee, R.H. (2004). Down’s syndrome and dementia. Adv. Psychiatr. Treat. 10, 50–58.10.1192/apt.10.1.50Search in Google Scholar
Stavrovskaya, A.V., Yamshchikoval N.G., Ol‘shanskiyl A.S., Babkinl G.A., and Illarioshkinl, S.N. (2016). Evaluation of the effects of new peptide compounds in experimental animals with a toxic model of Alzheimer’s disease. Ann. Clin. Exp. Neurol. 10, 33–42.Search in Google Scholar
Stelmashook, E.V., Isaev, N.K., Genrikhs, E.E., Amelkina, G.A., Khaspekov, L.G., Skrebitsky, V.G., and Illarioshkin, S.N. (2014). Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry (Mosc.) 79, 391–396.10.1134/S0006297914050022Search in Google Scholar PubMed
Strauss, D. and Eyman, R.K. (1996). Mortality of people with mental retardation in California with and without Down syndrome, 1986–1991. Am. J. Ment. Retard. 100, 643–653.Search in Google Scholar PubMed
Tamagno, E., Parola, M., Bardini, P., Piccini, A., Borghi, R., Guglielmotto, M., Santoro, G., Davit, A., Danni, O., Smith, M.A., et al. (2005). Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J. Neurochem. 92, 628–636.10.1111/j.1471-4159.2004.02895.xSearch in Google Scholar PubMed
Tamagno, E., Guglielmotto, M., Aragno, M., Borghi, R., Autelli, R., Giliberto, L., Muraca, G., Danni, O., Zhu, X., Smith, M.A., et al. (2008). Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the β-amyloid precursor protein. J. Neurochem. 104, 683–695.Search in Google Scholar PubMed
Tanzi, R.E., Haines, J.L., Watkins, P.C., Stewart, G.D., Wallace, M.R., Hallewell, R., Wong, C., Wexler, N.S., Conneally, P.M., and Gusella, J.F. (1988). Genetic linkage map of human chromosome 21. Genomics 3, 129–136.10.1016/0888-7543(88)90143-7Search in Google Scholar PubMed
Ullrich, N.J. and Gordon, L.B. (2015). Hutchinson–Gilford progeria syndrome. Handb. Clin. Neurol. 132, 249–264.10.1016/B978-0-444-62702-5.00018-4Search in Google Scholar PubMed
Valenti, D., Manente, G.A., Moro, L., Marra, E., and Vacca, R.A. (2011). Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem. J. 435, 679–688.10.1042/BJ20101908Search in Google Scholar PubMed
Wang, P., Chen, H., Qin, H., Sankarapandi, S., Becher, M.W., Wong, P.C., and Zweier, J.L. (1998). Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc. Natl. Acad. Sci. USA 95, 4556–4560.10.1073/pnas.95.8.4556Search in Google Scholar
Wisniewski, K.E., Wisniewski, H.M., and Wen, G.Y. (1985). Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17, 278–282.10.1002/ana.410170310Search in Google Scholar PubMed
Xekardaki, A., Kоvari, E., Gold, G., Papadimitropoulou, A., Giacobini, E., Herrmann, F., Giannakopoulos, P., and Bouras, C. (2015). Neuropathological changes in aging brain. Adv. Exp. Med. Biol. 821, 11–17.10.1007/978-3-319-08939-3_6Search in Google Scholar PubMed
Yang, Q., Rasmussen, S.A., and Friedman, J.M. (2002). Mortality associated with Down’s syndrome in the USA from 1983 to 1997: a population-based study. Lancet 359, 1019–1025.10.1016/S0140-6736(02)08092-3Search in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Accelerated aging and aging process in the brain
- Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase
- The neurophysiology of working memory development: from childhood to adolescence and young adulthood
- Mothering under the influence: how perinatal drugs of abuse alter the mother-infant interaction
- The natural history of subependymal giant cell astrocytomas in tuberous sclerosis complex: a review
- Why do herpes simplex encephalitis and semantic dementia show a different pattern of semantic impairment in spite of their main common involvement within the anterior temporal lobes?
- Regenerative potential of secretome from dental stem cells: a systematic review of preclinical studies
- Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy
- Population-based differences in immune system response contribute to an increased risk of schizophrenia in African migrants?
Articles in the same Issue
- Frontmatter
- Accelerated aging and aging process in the brain
- Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase
- The neurophysiology of working memory development: from childhood to adolescence and young adulthood
- Mothering under the influence: how perinatal drugs of abuse alter the mother-infant interaction
- The natural history of subependymal giant cell astrocytomas in tuberous sclerosis complex: a review
- Why do herpes simplex encephalitis and semantic dementia show a different pattern of semantic impairment in spite of their main common involvement within the anterior temporal lobes?
- Regenerative potential of secretome from dental stem cells: a systematic review of preclinical studies
- Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy
- Population-based differences in immune system response contribute to an increased risk of schizophrenia in African migrants?