Home Physical Sciences Effect of replacing ZnO with La2O3 on the physical, optical, and radiation shielding properties of lanthanum zinc tellurite
Article
Licensed
Unlicensed Requires Authentication

Effect of replacing ZnO with La2O3 on the physical, optical, and radiation shielding properties of lanthanum zinc tellurite

  • Dalal Abdullah Aloraini , Ateyyah M. Al-Baradi and Kh. S. Shaaban ORCID logo EMAIL logo
Published/Copyright: May 1, 2025

Abstract

The optical and radiation attenuation properties of zinc-tellurite glass modified with La2O3 are investigated in this work. The density increased from 3.13 to 4.73 g cm−3 as the concentrations of La2O3 rises, indicating a significant physical property. A shift in absorption to lower energy levels is indicated by the Urbach energy (E u) rising from 0.307 to 0.335 and the optical band gap narrowing from 3.36 to 1.36 eV for ( E opt indi ), and from 4.06 to 1.5 eV for ( E opt di ). This study concludes that the zinc tellurite glasses doped with La2O3 showed improved optical characteristics for optical semiconducting devices. LAC (cm−1) increases from 0.115 to 0.183 at 15 MeV and from 140.97 to 223.49 cm−1 at 0.015 MeV as the La2O3 content increases, indicating a significant improvement in radiation shielding effectiveness. The high (LAC) values indicate enhanced photon absorption, making this glass a strong candidate for radiation shielding in medical applications. Overall, this study indicated that La2O3 could offer better shielding properties to the glass samples.


Corresponding author: Kh. S. Shaaban, Department of Chemistry, Faculty of Science, Al-Azhar University, P.O. 71524, Assiut, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors express their gratitude Taif University Researchers Supporting Project number (TU-DSPP-2024-124), Taif University, Taif, Saudi Arabia.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Shaaban, K. S.; Basha, B.; Alrowaili, Z. A.; Al-Buriahi, M. S.; Abdel Wahab, E. A. A Closer Inspection of the Structural, Mechanical, Optical and Radiation Shielding Properties of GeO2-Doped Magnesium-Telluroborate Glasses. Radiochim. Acta 2023, 111 (9), 713–724. https://doi.org/10.1515/ract-2023-0140.Search in Google Scholar

2. Shaaban, K.; Yousef, E. S. Optical Properties of Bi2O3 Doped Boro Tellurite Glasses and Glass Ceramics. Optik 2020, 203, 163976. https://doi.org/10.1016/j.ijleo.2019.163976.Search in Google Scholar

3. Shaaban, K. S.; Alotaibi, B. M.; Alharbiy, N.; El-Rehim, A. F. A. Fabrication of Lithium Borosilicate Glasses Containing Fe2O3 and ZnO for FT-IR, UV–Vis–NIR, DTA, and Highly Efficient Shield. Appl. Phys. A 2022, 128, 333–341. https://doi.org/10.1007/s00339-022-05474-4.Search in Google Scholar

4. Shaaban, K. S.; Boukhris, I.; Kebaili, I.; Al-Buriahi, M. S. Spectroscopic and Attenuation Shielding Studies on B2O3-SiO2-LiF-ZnO-TiO2 Glasses. Silicon 2022, 14, 3091–3100. https://doi.org/10.1007/s12633-021-01080-w.Search in Google Scholar

5. Almutairi, H. M.; Aloraini, D. A.; Alsafi, K.; Al-Saleh, W. M.; Alzahrani, A. S.; Shaaban, K. S. Impact of the La2O3 Addition on the Structure, Mechanical and Radiation Attenuation Features of La2O3–ZnO–SiO2–B2O3 Glass. Silicon 2024, 16, 2873–2884. https://doi.org/10.1007/s12633-024-02900-5.Search in Google Scholar

6. Shaaban, K. S.; Alsafi, K.; Aloraini, D. A.; Al-Saleh, W. M.; Almutairi, H. M.; Assem, E. E. Influence of La2O3 on Mechanical Properties and Radiation-Shielding Performance of Magnesium Beryllia-Borosilicate Glass System. Silicon 2024, 16, 2899–2911. https://doi.org/10.1007/s12633-024-02897-x.Search in Google Scholar

7. Şakar, E.; Özpolat, Ö. F.; Alım, B.; Sayyed, M. I.; Kurudirek, M. PhyX/PSD: Development of a User-Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry. Radiation Phys. Chem. 2020, 166, 108496. https://doi.org/10.1016/j.radphyschem.Search in Google Scholar

8. Kreen, K.; Aloraini, D. A.; Al-Baradi, A. M. A Closer Inspection of the Mechanical and Radiation Shielding Properties of La2O3-Doped Zinc Tellurite Glasses. Radiat. Phys. Chem. 2025, 232, 112613. https://doi.org/10.1016/j.radphyschem.2025.112613.Search in Google Scholar

9. Laifi, J.; Althagafi, T. M.; Ibrahim, E. H.; Ghramh, H. A.; Ellakwa, T. E.; Shaaban, K. S. Characterization of Mechanical and Radiation Shielding Ability of CdO–SiO2–B2O3–MoO3–LiF Glasses. Silicon 2024, 16, 593–601. https://doi.org/10.1007/s12633-023-02699-7.Search in Google Scholar

10. Althagafi, T. M.; Sayed, M. A.; Alghasham, H. A.; Al-Harbi, N.; Shaaban, K. S. The Impact of Changing the LiF Concentration on Structural, Thermal, Physical, and Optical Properties of CdO—SiO2—B2o3—MoO3—LiF Glasses. Silicon 2023, 15, 7047–7056. https://doi.org/10.1007/s12633-023-02567-4.Search in Google Scholar

11. Ali, A. M.; Alrowaili, Z. A.; Al-Baradi, A. M.; Al-Buriahi, M. S.; Wahab, E. A. A.; Shaaban, K. S. A Study of Thermal, and Optical Properties of 22SiO2-23Bi2O3-37b2o3-13TiO2-(5-X) LiF-X BaO Glasses. Silicon 2022, 14, 6447–6455. https://doi.org/10.1007/s12633-021-01440-6.Search in Google Scholar

12. Sayed, M. A.; Basha, B.; Al-Harbi, N.; Al-Baradi, A. M.; Shaaban, K. S. PbO Effect on Physical, Mechanical, Optical, Structural, and Radiation Characteristics of P2O5-BaO-PbO Glass System. Eur. Phys. J. Plus 2023, 138, 455. https://doi.org/10.1140/epjp/s13360-023-04079-x.Search in Google Scholar

13. Shaaban, K.; El-Maaref, A.; Abdelawwad, M.; Saddeek, Y.; Wilke, H.; Hillmer, H. Spectroscopic Properties and Judd-Ofelt Analysis of Dy3+ Ions in Molybdenum Borosilicate Glasses. J. Lumin. 2018, 196, 477–484. https://doi.org/10.1016/j.jlumin.2017.12.041.Search in Google Scholar

14. Shaaban, Kh. S.; Tamam, N.; Alghasham, H. A.; Alrowaili, Z. A.; Al-Buriahi, M. S.; Ellakwa, T. E. Thermal, Optical, and Radiation Shielding Capacity of B2O3-MoO3-Li2O-Nb2O5 Glasses. Mater. Today Commun. 2023, 37, 107325. https://doi.org/10.1016/j.mtcomm.2023.107325.Search in Google Scholar

15. Tauc, J. Absorption Edge and Internal Electric Fields in Amorphous Semiconductors. Mater. Res. Bull. 1970, 5, 721; https://doi.org/10.1016/0025-5408(70)90112-1.Search in Google Scholar

16. Davis, E.; Mott, N. Conduction in Non-crystalline Systems V. Conductivity, Optical Absorption and Photoconductivity in Amorphous Semiconductors. Philos. Mag. 1970, 22 (179), 0903–0922; https://doi.org/10.1080/14786437008221061.Search in Google Scholar

17. Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324. https://doi.org/10.1103/PhysRev.92.1324.Search in Google Scholar

18. Alsafi, K.; Aloraini, D. A.; Saif, M. A.; Shaaban, Kh. S. Gamma and Neutron Attenuation of SiO2–B2O3–BaO–Li2O Glasses Doped with CeO2. Radiochim. Acta 2024, 112 (9), 703–709. https://doi.org/10.1515/ract-2024-0272.Search in Google Scholar

19. Shaaban, K. S.; Alyousef, H. A.; Alotaibi, B. M.; El-Rehim, A. F. A.; Wahab, E. A. A. The Vital Role of TiO2 on the Bioglass System P2O5-CaO-B2O3-SiO2-K2O for Optics and Shielding Characteristics. J. Inorg. Organomet. Polym. 2022, 32, 4295–4303. https://doi.org/10.1007/s10904-022-02446-2.Search in Google Scholar

20. Shaaban, K. S.; Alotaibi, B. M.; Alharbiy, N.; Al-Baradi, A. M.; El-Rehim, A. A. Impact of TiO2 on DTA and Elastic Moduli of Calcium Potassium Borophosphosilicate Glasses in Prelude for Use in Dental and Orthopedic Applications. Silicon 2022, 14, 11991–12000. https://doi.org/10.1007/s12633-022-02029-3.Search in Google Scholar

21. Shaaban, K. S.; Aloraini, D. A. Spectroscopic Insights: Linear and Nonlinear Properties and Radiation Shielding Characteristics of Titanium-Modified Aluminum Borosilicate Glasses. Mater. Res. Bull. 2025, 184, 113266. https://doi.org/10.1016/j.materresbull.2024.113266.Search in Google Scholar

22. Shaaban, K. S.; Aloraini, D. A.; Al-Baradi, A. M.; Assem, E. E. Bi2O3 Reinforced B2O3–SiO2–MgO Glass System: A Characterization Study through Physical, Mechanical and Gamma Shields Characteristics. Silicon 2025, 17, 615–624; https://doi.org/10.1007/s12633-024-03217-z.Search in Google Scholar

23. Aloraini, D. A.; Shaaban, K. S.; Gomaa, H. M. Influence of Replacement Trace Amounts of B2O3 with Nd2O3 on the Optical, Shielding, and Structural Parameters of Lanthanum-Based Borate Glass. Radiat. Phys. Chem. 2025, 231, 112598. https://doi.org/10.1016/j.radphyschem.2025.112598.Search in Google Scholar

24. Shaaban, K. S.; Alotaibi, B. M.; Alharbi, N.; Alrowaili, Z. A.; Al-Buriahi, M. S.; Makhlouf, S. A.; Abd El-Rehim, A. F. Physical, Optical, and Radiation Characteristics of Bioactive Glasses for Dental Prosthetics and Orthopaedic Implants Applications. Radiat. Phys. Chem. 2022, 193, 109995. https://doi.org/10.1016/j.radphyschem.2022.109995.Search in Google Scholar

25. Sayed, M. A.; Basha, B.; Al-Harbi, N.; Shaaban, K. S. Investigation of Elastic Moduli and Gamma-Ray Shielding Parameters of P2O5-SiO2-BaO Glasses Doped with Varying WO3. Silicon 2023, 15, 6463–6471. https://doi.org/10.1007/s12633-023-02537-w.Search in Google Scholar

26. Shaaban, K. S.; Al-Baradi, A. M.; Alotaibi, B. M.; Abd El-Rehim, A. F. Mechanical and Radiation Shielding Features of Lithium Titanophosphate Glasses Doped BaO. J. Mater. Res. Technol. 2023, 23, 756–764. https://doi.org/10.1016/j.jmrt.2023.01.062.Search in Google Scholar

27. Al-Baradi, A. M.; Alotaibi, B. M.; Alharbi, N.; El-Rehim, A. F. A.; Shaaban, K. S. Gamma Radiation Shielding and Mechanical Studies on Highly Dense Lithium Iron Borosilicate Glasses Modified by Zinc Oxide. Silicon 2022, 14, 10391–10399. https://doi.org/10.1007/s12633-022-01801-9.Search in Google Scholar

28. Shaaban, K. S.; Al-Baradi, A. M.; Ali, A. M. The Impact of Cr2O3 on the Mechanical, Physical, and Radiation Shielding Characteristics of Na2B4O7–CaO–SiO2 Glasses. Silicon 2022, 14, 10375–10382. https://doi.org/10.1007/s12633-022-01783-8.Search in Google Scholar

29. Shaaban, K. S.; Aloraini, D. A.; Alsafi, K.; Almutairi, H. M.; Al-Saleh, W. M.; Alzahrani, A. S. Role of CeO2 in the Enhancement of the Properties of the SiO2-B2O3-BaO-Li2O-Glass System: Structural, Mechanical and Radiation Shielding Study. Mater. Today Commun. 2024, 38, 108309. https://doi.org/10.1016/j.mtcomm.2024.108309.Search in Google Scholar

30. Fidan, M.; Acikgoz, A.; Yılmaz, D.; Demircan, G.; Kalecik, S.; Aktas, B.; Isgor, S. Investigation of the Structural, Mechanical, Radiation and Neutron Shielding Properties of the TeO2-B2O3-Li2O-MoO3-CuO Glass System. J. Alloys Compd. 2024, 976, 172981. https://doi.org/10.1016/j.jallcom.2023.172981.Search in Google Scholar

31. Shaaban, K. S.; Yousef, E. S.; Abdel Wahab, E. A.; Shaaban, E. R.; Mahmoud, S. A. Investigation of Crystallization and Mechanical Characteristics of Glass and Glass-Ceramic with the Compositions xFe2O3-35SiO2-35B2O3-10Al2O3-(20−x) Na2O. J. Mater. Eng. Perform. 2020, 29, 4549. https://doi.org/10.1007/s11665-020-04969-6.Search in Google Scholar

32. Aktas, B.; Acikgoz, A.; Yilmaz, D.; Yalcin, S.; Dogru, K.; Yorulmaz, N. The Role of TeO2 Insertion on the Radiation Shielding, Structural and Physical Properties of Borosilicate Glasses. J. Nucl. Mater. 2022, 563, 153619. https://doi.org/10.1016/j.jnucmat.2022.153619.Search in Google Scholar

33. Fidan, M.; Acikgoz, A.; Demircan, G.; Yilmaz, D.; Aktas, B. Optical, Structural, Physical, and Nuclear Shielding Properties, and Albedo Parameters of TeO2–BaO–B2o3–PbO–V2o5 Glasses. J. Phys. Chem. Solids 2022, 163, 110543. https://doi.org/10.1016/j.jpcs.2021.110543.Search in Google Scholar

Received: 2025-01-24
Accepted: 2025-04-17
Published Online: 2025-05-01
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0006/html
Scroll to top button