Abstract
Phenolic antioxidants (PhA), a novel antioxidant for natural rubber (NR), were used in the current study. As anti-aging agents, different concentrations of gallic acid (G) or tannic acid (T) were added to NR/PhA composites to increase their heat resistance. The NR/PhA composites’ mechanical, Physico-chemical, and DSC characteristics were evaluated, as well as their thermo-oxidative aging evaluations. This led to a significant improvement in the mechanical properties of the NR/PhA composites, making them superior to the NR/Antage (as a traditional antioxidant) composites. Additionally, the addition of phenolic antioxidants raised the crosslinking density of the NR composites, which significantly impacted the mechanical characteristics. According to the findings, phenolic antioxidants enhanced the NR/silica composites’ resistance to solvent extraction and thermo-oxidative aging, much like Antage. Upon ionizing irradiation, the mechanical characteristics of the vulcanized composites rise with increasing absorbed dose at 10 kGy and then decrease at 30 kGy.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Khaled F. El-Nemr: Conceptualization, Methodology, Investigation, Polymer composites synthesis, Characterization, Data interpretation, writing – original draft, editing & reviewing. Hamdi Radi: Conceptualization, Methodology, Investigation, Polymer composites synthesis, Characterization, Data interpretation, writing – original draft, editing & reviewing. Adel A. Koriem: Methodology, writing – original draft, editing & reviewing. Eman M. Hamdy: Methodology, writing – original draft, editing & reviewing. Aman I. Khalaf: conceptualization, Methodology, Characterization, Polymer composites synthesis, Data interpretation, writing – original draft, editing & reviewing.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare that no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Song, M.; Yue, X.; Chang, C.; Cao, F.; Yu, G.; Wang, X. Investigation of the Compatibility and Damping Performance of Graphene Oxide Grafted Antioxidant/nitrile-Butadiene Rubber Composite: Insights from Experiment and Molecular Simulation. Polymers 2022, 14, 736; https://doi.org/10.3390/polym14040736.Search in Google Scholar
2. El-Sabbagh, S. H.; Mahmoud, D. S.; Ahmed, N. M.; Sabaa, M. W. Effect of Cation-Exchange Bentonite on Properties of Acrylonitrile-Butadiene Rubber Composites. Proc. Inst. Mech. Eng., Part L 2018, 232, 148–163; https://doi.org/10.1177/1464420715623976.Search in Google Scholar
3. Komethi, M.; Othman, N.; Ismail, H.; Sasidharan, S. Comparative Study on Natural Antioxidant as an Aging Retardant for Natural Rubber Vulcanizates. J Appl Polym Sci 2012, 124, 1490–1500; https://doi.org/10.1002/app.35160.Search in Google Scholar
4. Mahmoud, D. S.; Elsayed, A.; Reffaee, A.; El-Nashar, D. E. Novel Prepared Nano Potassium Methyl Siliconate as Antioxidant for Nitrile Rubber. Polym. Polym. Compos. 2023, 31, 09673911231154071; https://doi.org/10.1177/09673911231154071.Search in Google Scholar
5. Hong, S. W. Antioxidants and Other Protectant Systems. In Rubber Compounding; CRC Press: Boca Raton, Florida, 2004; pp 466–513.10.1201/9781420030464-12Search in Google Scholar
6. Gent, A. N. Engineering With Rubber: How to Design Rubber Components; Carl Hanser Verlag GmbH Co KG: Cincinnati, OH, 2012.10.1007/978-3-446-42871-3Search in Google Scholar
7. Li, G. Y.; Koenig, J. A Review of Rubber Oxidation. Rubber Chem. Technol. 2005, 78, 355–390; https://doi.org/10.5254/1.3547888.Search in Google Scholar
8. Malshe, V.; Elango, S.; Rane, S. Alkylated Phenolic Resins as Antioxidants for Rubber. J Appl Polym Sci 2006, 100, 2649–2651; https://doi.org/10.1002/app.22736.Search in Google Scholar
9. Hossain, K. Z.; Chowdhury, A. S.; Haque, M.; Dafader, N.; Akhtar, F. Effect of Natural Antioxidant (Diospyros Peregrina) on the Aging Properties of Radiation Vulcanized (γ-Radiation) Natural Rubber Latex Film. Polym. Plast. Technol. Eng. 2010, 49, 136–140; https://doi.org/10.1080/03602550903283141.Search in Google Scholar
10. Fraga-Corral, M.; García-Oliveira, P.; Pereira, A. G.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Prieto, M. A.; Simal-Gandara, J. Technological Application of Tannin-Based Extracts. Molecules 2020, 25, 614; https://doi.org/10.3390/molecules25030614.Search in Google Scholar
11. Haslam, E. Vegetable Tannins. In Biochemistry of plant phenolics; Springer: New York City, 1979; pp 475–523.10.1007/978-1-4684-3372-2_15Search in Google Scholar
12. Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. Br. J. Pharmacol. 2017, 174, 1244–1262; https://doi.org/10.1111/bph.13630.Search in Google Scholar
13. Luo, K.; You, G.; Zhao, X.; Lu, L.; Wang, W.; Wu, S. Synergistic Effects of Antioxidant and Silica on Enhancing Thermo-Oxidative Resistance of Natural Rubber: Insights from Experiments and Molecular Simulations. Mater. Des. 2019, 181, 107944; https://doi.org/10.1016/j.matdes.2019.107944.Search in Google Scholar
14. Zhang, L.; Li, H.; Lai, X.; Liao, X.; Wang, J.; Su, X.; Liu, H.; Wu, W.; Zeng, X. Functionalized Graphene as an Effective Antioxidant in Natural Rubber. Compos. Appl. Sci. Manuf. 2018, 107, 47–54; https://doi.org/10.1016/j.compositesa.2017.12.028.Search in Google Scholar
15. Flory, P. J. Principles Of Polymer Chemistry; Cornell University Press: Ithaca, New York, 1953.Search in Google Scholar
16. Khalaf, A. I.; Helaly, F. M.; El Sawy, S. Improvement Properties of EPDM Rubber Using Hybrid Chitin/clay Filler for Industrial Products. Egypt. J. Chem. 2020, 63, 129–143.Search in Google Scholar
17. Ullah, H.; Qamar, S.; Khan, F.; Rahim, F.; Shamim, A.; Uddin, I.; Rehman, Z. U.; Ahmad, F.; Shah, M. R. Tannic Acid Based Gold Nanosensor for Selective Detection of Hg+ 2 and Pefloxacine. J. Ongoing. Chem. Res. 2019, 4, 24–31.Search in Google Scholar
18. Meenakshi, S.; Gnanambigai, D. M.; Mozhi, S. T.; Arumugam, M.; Balasubramanian, T. Total Flavanoid and In Vitro Antioxidant Activity of Two Seaweeds of Rameshwaram Coast. Global J. Pharmacol. 2009, 3, 59–62.Search in Google Scholar
19. Galiani, P. D.; Malmonge, J. A.; Santos, D. P. d.; Malmonge, L. F. Compósitos de borracha natural com polianilina. Polímeros 2007, 17, 93–97; https://doi.org/10.1590/s0104-14282007000200007.Search in Google Scholar
20. Filgueira, M. D. S.; Pinto, L. F.; Hiranobe, C. T.; de Freitas, A. D. S. M.; Rodrigues, J. D. S.; de Oliveira, A. L.; Ferreira, M.; Kawall, S. A.; Souza, D. D. S.; da Silva, E. A.; Nascimento, E. S.; Silva, M. J. D.; Cabrera, F. C.; Gennaro, E. M.; dos Santos, R. J. Evaluation of the Antioxidant Properties of Black Acacia (Acacia Mearnsii) Tannin in Vulcanized Natural Rubber Using Different Vulcanization Systems. Sustainability 2024, 16, 2071–1050; https://doi.org/10.3390/su162411213.Search in Google Scholar
21. Pan, Q.; Wang, B.; Chen, Z.; Zhao, J. Reinforcement and Antioxidation Effects of Antioxidant Functionalized Silica in Styrene–Butadiene Rubber. Mater. Des. 2013, 50, 558–565; https://doi.org/10.1016/j.matdes.2013.03.050.Search in Google Scholar
22. Khozemy, E. E.; Nasef, S. M.; Radi, H. A Comparative Study of the Mechanical and Thermal Properties of EPDM Rubber/cement Kiln Dust Composite Cured by Ionizing Radiation. Int. J. Polym. Anal. Charact. 2024, 1–18; https://doi.org/10.1080/1023666x.2024.2360855.Search in Google Scholar
23. Naeem, A.; Yu, C.; Zhu, W.; Chen, X.; Wu, X.; Chen, L.; Zang, Z.; Guan, Y. Gallic Acid-Loaded Sodium Alginate-Based (Polyvinyl Alcohol-Co-Acrylic Acid) Hydrogel Membranes for Cutaneous Wound Healing: Synthesis and Characterization. Molecules 2022, 27, 8397; https://doi.org/10.3390/molecules27238397.Search in Google Scholar
24. da Silva Soares, B.; de Carvalho, C. W. P.; Garcia-Rojas, E. E. Microencapsulation of Sacha Inchi Oil by Complex Coacervates Using Ovalbumin-Tannic Acid and Pectin as Wall Materials. Food Bioprocess Technol. 2021, 14, 817–830; https://doi.org/10.1007/s11947-021-02594-2.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Utilization of traceable standards to validate plutonium isotopic purification and separation of plutonium progeny using AG MP-1M resin for nuclear forensic investigations
- DFT study of Se(-II) sorption on biotite in reducing conditions
- 140Ba → 140La radionuclide generator: reverse-tandem scheme
- Estimation of valuable metals content in tin ore mining waste of the Russian Far East region by instrumental neutron activation analysis
- Optimizing vulcanized natural rubber: the role of phenolic natural antioxidants and ionizing radiation
- The gamma radiation shielding properties of tin-doped composites: experimental and theoretical comparison
- Effect of replacing ZnO with La2O3 on the physical, optical, and radiation shielding properties of lanthanum zinc tellurite
Articles in the same Issue
- Frontmatter
- Original Papers
- Utilization of traceable standards to validate plutonium isotopic purification and separation of plutonium progeny using AG MP-1M resin for nuclear forensic investigations
- DFT study of Se(-II) sorption on biotite in reducing conditions
- 140Ba → 140La radionuclide generator: reverse-tandem scheme
- Estimation of valuable metals content in tin ore mining waste of the Russian Far East region by instrumental neutron activation analysis
- Optimizing vulcanized natural rubber: the role of phenolic natural antioxidants and ionizing radiation
- The gamma radiation shielding properties of tin-doped composites: experimental and theoretical comparison
- Effect of replacing ZnO with La2O3 on the physical, optical, and radiation shielding properties of lanthanum zinc tellurite