Home Physical Sciences Optimizing vulcanized natural rubber: the role of phenolic natural antioxidants and ionizing radiation
Article
Licensed
Unlicensed Requires Authentication

Optimizing vulcanized natural rubber: the role of phenolic natural antioxidants and ionizing radiation

  • Khaled F. El-Nemr , Hamdi Radi EMAIL logo , Adel A. Koriem , Eman M. Hamdy and Aman I. Khalaf
Published/Copyright: April 14, 2025

Abstract

Phenolic antioxidants (PhA), a novel antioxidant for natural rubber (NR), were used in the current study. As anti-aging agents, different concentrations of gallic acid (G) or tannic acid (T) were added to NR/PhA composites to increase their heat resistance. The NR/PhA composites’ mechanical, Physico-chemical, and DSC characteristics were evaluated, as well as their thermo-oxidative aging evaluations. This led to a significant improvement in the mechanical properties of the NR/PhA composites, making them superior to the NR/Antage (as a traditional antioxidant) composites. Additionally, the addition of phenolic antioxidants raised the crosslinking density of the NR composites, which significantly impacted the mechanical characteristics. According to the findings, phenolic antioxidants enhanced the NR/silica composites’ resistance to solvent extraction and thermo-oxidative aging, much like Antage. Upon ionizing irradiation, the mechanical characteristics of the vulcanized composites rise with increasing absorbed dose at 10 kGy and then decrease at 30 kGy.


Corresponding author: Hamdi Radi, Radiation chemistry department National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Khaled F. El-Nemr: Conceptualization, Methodology, Investigation, Polymer composites synthesis, Characterization, Data interpretation, writing – original draft, editing & reviewing. Hamdi Radi: Conceptualization, Methodology, Investigation, Polymer composites synthesis, Characterization, Data interpretation, writing – original draft, editing & reviewing. Adel A. Koriem: Methodology, writing – original draft, editing & reviewing. Eman M. Hamdy: Methodology, writing – original draft, editing & reviewing. Aman I. Khalaf: conceptualization, Methodology, Characterization, Polymer composites synthesis, Data interpretation, writing – original draft, editing & reviewing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare that no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Song, M.; Yue, X.; Chang, C.; Cao, F.; Yu, G.; Wang, X. Investigation of the Compatibility and Damping Performance of Graphene Oxide Grafted Antioxidant/nitrile-Butadiene Rubber Composite: Insights from Experiment and Molecular Simulation. Polymers 2022, 14, 736; https://doi.org/10.3390/polym14040736.Search in Google Scholar

2. El-Sabbagh, S. H.; Mahmoud, D. S.; Ahmed, N. M.; Sabaa, M. W. Effect of Cation-Exchange Bentonite on Properties of Acrylonitrile-Butadiene Rubber Composites. Proc. Inst. Mech. Eng., Part L 2018, 232, 148–163; https://doi.org/10.1177/1464420715623976.Search in Google Scholar

3. Komethi, M.; Othman, N.; Ismail, H.; Sasidharan, S. Comparative Study on Natural Antioxidant as an Aging Retardant for Natural Rubber Vulcanizates. J Appl Polym Sci 2012, 124, 1490–1500; https://doi.org/10.1002/app.35160.Search in Google Scholar

4. Mahmoud, D. S.; Elsayed, A.; Reffaee, A.; El-Nashar, D. E. Novel Prepared Nano Potassium Methyl Siliconate as Antioxidant for Nitrile Rubber. Polym. Polym. Compos. 2023, 31, 09673911231154071; https://doi.org/10.1177/09673911231154071.Search in Google Scholar

5. Hong, S. W. Antioxidants and Other Protectant Systems. In Rubber Compounding; CRC Press: Boca Raton, Florida, 2004; pp 466–513.10.1201/9781420030464-12Search in Google Scholar

6. Gent, A. N. Engineering With Rubber: How to Design Rubber Components; Carl Hanser Verlag GmbH Co KG: Cincinnati, OH, 2012.10.1007/978-3-446-42871-3Search in Google Scholar

7. Li, G. Y.; Koenig, J. A Review of Rubber Oxidation. Rubber Chem. Technol. 2005, 78, 355–390; https://doi.org/10.5254/1.3547888.Search in Google Scholar

8. Malshe, V.; Elango, S.; Rane, S. Alkylated Phenolic Resins as Antioxidants for Rubber. J Appl Polym Sci 2006, 100, 2649–2651; https://doi.org/10.1002/app.22736.Search in Google Scholar

9. Hossain, K. Z.; Chowdhury, A. S.; Haque, M.; Dafader, N.; Akhtar, F. Effect of Natural Antioxidant (Diospyros Peregrina) on the Aging Properties of Radiation Vulcanized (γ-Radiation) Natural Rubber Latex Film. Polym. Plast. Technol. Eng. 2010, 49, 136–140; https://doi.org/10.1080/03602550903283141.Search in Google Scholar

10. Fraga-Corral, M.; García-Oliveira, P.; Pereira, A. G.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Prieto, M. A.; Simal-Gandara, J. Technological Application of Tannin-Based Extracts. Molecules 2020, 25, 614; https://doi.org/10.3390/molecules25030614.Search in Google Scholar

11. Haslam, E. Vegetable Tannins. In Biochemistry of plant phenolics; Springer: New York City, 1979; pp 475–523.10.1007/978-1-4684-3372-2_15Search in Google Scholar

12. Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. Br. J. Pharmacol. 2017, 174, 1244–1262; https://doi.org/10.1111/bph.13630.Search in Google Scholar

13. Luo, K.; You, G.; Zhao, X.; Lu, L.; Wang, W.; Wu, S. Synergistic Effects of Antioxidant and Silica on Enhancing Thermo-Oxidative Resistance of Natural Rubber: Insights from Experiments and Molecular Simulations. Mater. Des. 2019, 181, 107944; https://doi.org/10.1016/j.matdes.2019.107944.Search in Google Scholar

14. Zhang, L.; Li, H.; Lai, X.; Liao, X.; Wang, J.; Su, X.; Liu, H.; Wu, W.; Zeng, X. Functionalized Graphene as an Effective Antioxidant in Natural Rubber. Compos. Appl. Sci. Manuf. 2018, 107, 47–54; https://doi.org/10.1016/j.compositesa.2017.12.028.Search in Google Scholar

15. Flory, P. J. Principles Of Polymer Chemistry; Cornell University Press: Ithaca, New York, 1953.Search in Google Scholar

16. Khalaf, A. I.; Helaly, F. M.; El Sawy, S. Improvement Properties of EPDM Rubber Using Hybrid Chitin/clay Filler for Industrial Products. Egypt. J. Chem. 2020, 63, 129–143.Search in Google Scholar

17. Ullah, H.; Qamar, S.; Khan, F.; Rahim, F.; Shamim, A.; Uddin, I.; Rehman, Z. U.; Ahmad, F.; Shah, M. R. Tannic Acid Based Gold Nanosensor for Selective Detection of Hg+ 2 and Pefloxacine. J. Ongoing. Chem. Res. 2019, 4, 24–31.Search in Google Scholar

18. Meenakshi, S.; Gnanambigai, D. M.; Mozhi, S. T.; Arumugam, M.; Balasubramanian, T. Total Flavanoid and In Vitro Antioxidant Activity of Two Seaweeds of Rameshwaram Coast. Global J. Pharmacol. 2009, 3, 59–62.Search in Google Scholar

19. Galiani, P. D.; Malmonge, J. A.; Santos, D. P. d.; Malmonge, L. F. Compósitos de borracha natural com polianilina. Polímeros 2007, 17, 93–97; https://doi.org/10.1590/s0104-14282007000200007.Search in Google Scholar

20. Filgueira, M. D. S.; Pinto, L. F.; Hiranobe, C. T.; de Freitas, A. D. S. M.; Rodrigues, J. D. S.; de Oliveira, A. L.; Ferreira, M.; Kawall, S. A.; Souza, D. D. S.; da Silva, E. A.; Nascimento, E. S.; Silva, M. J. D.; Cabrera, F. C.; Gennaro, E. M.; dos Santos, R. J. Evaluation of the Antioxidant Properties of Black Acacia (Acacia Mearnsii) Tannin in Vulcanized Natural Rubber Using Different Vulcanization Systems. Sustainability 2024, 16, 2071–1050; https://doi.org/10.3390/su162411213.Search in Google Scholar

21. Pan, Q.; Wang, B.; Chen, Z.; Zhao, J. Reinforcement and Antioxidation Effects of Antioxidant Functionalized Silica in Styrene–Butadiene Rubber. Mater. Des. 2013, 50, 558–565; https://doi.org/10.1016/j.matdes.2013.03.050.Search in Google Scholar

22. Khozemy, E. E.; Nasef, S. M.; Radi, H. A Comparative Study of the Mechanical and Thermal Properties of EPDM Rubber/cement Kiln Dust Composite Cured by Ionizing Radiation. Int. J. Polym. Anal. Charact. 2024, 1–18; https://doi.org/10.1080/1023666x.2024.2360855.Search in Google Scholar

23. Naeem, A.; Yu, C.; Zhu, W.; Chen, X.; Wu, X.; Chen, L.; Zang, Z.; Guan, Y. Gallic Acid-Loaded Sodium Alginate-Based (Polyvinyl Alcohol-Co-Acrylic Acid) Hydrogel Membranes for Cutaneous Wound Healing: Synthesis and Characterization. Molecules 2022, 27, 8397; https://doi.org/10.3390/molecules27238397.Search in Google Scholar

24. da Silva Soares, B.; de Carvalho, C. W. P.; Garcia-Rojas, E. E. Microencapsulation of Sacha Inchi Oil by Complex Coacervates Using Ovalbumin-Tannic Acid and Pectin as Wall Materials. Food Bioprocess Technol. 2021, 14, 817–830; https://doi.org/10.1007/s11947-021-02594-2.Search in Google Scholar

Received: 2025-02-17
Accepted: 2025-03-29
Published Online: 2025-04-14
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0023/html
Scroll to top button