Abstract
In this study, the gamma radiation shielding properties of tin (Sn)-containing polymer composites were investigated. A polymer matrix was created with cobalt octoate (6 %), methyl ethyl ketone peroxide (MEKP), and unsaturated polyester resin. Then, as filler, Sn was introduced to this polymer matrix at specific rates. The mass attenuation coefficients, linear attenuation coefficients, radiation transmission factor, half value layers, mean free path values, and effective atomic numbers parameters were acquired in order to investigate the gamma radiation attenuation properties of the fabricated polymer composites. The HPGe detector was used to conduct experimental research at 22 distinct energies emitted from 22Na, 54Mn, 57Co, 60Co, 133Ba, 137Cs, 152Eu and 241Am radioactive sources in the photon energy range of 59.5–1,408.0 keV. The theoretical results and each acquired experimental result were compared. It was found that the sample encoded with Sn (20 %) provides the best gamma radiation protection among the composites under study.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Sowby, F. D. Radiation and Other Risks. Health Phys. 1965, 11 (9), 879–887; https://doi.org/10.1097/00004032-196509000-00008.Search in Google Scholar
2. Oğul, H.; Polat, H.; Akman, F.; Kaçal, M. R.; Dilsiz, K.; Bulut, F.; Agar, O. Gamma and Neutron Shielding Parameters of Polyester-Based Composites Reinforced with Boron and Tin Nanopowders. Radiat. Phys. Chem. 2022, 201, 110474; https://doi.org/10.1016/j.radphyschem.2022.110474.Search in Google Scholar
3. Erkoyuncu, İ.; Demirkol, İ.; Akman, F.; Dilsiz, K.; Kaçal, M. R.; Polat, H. A Detailed Investigation of Gamma and Neutron Shielding Capabilities of Concrete Doped with Bronze and Boron Carbide. Radiat. Phys. Chem. 2024, 215, 111358; https://doi.org/10.1016/j.radphyschem.2023.111358.Search in Google Scholar
4. Daungwilailuk, T.; Yenchai, C.; Rungjaroenkiti, W.; Pheinsusom, P.; Panwisawas, C.; Pansuk, W. Use of Barite Concrete for Radiation Shielding against Gamma-Rays and Neutrons. Constr. Build. 2022, 326, 126838; https://doi.org/10.1016/j.conbuildmat.2022.126838.Search in Google Scholar
5. Mostofinejad, D.; Reisi, M.; Shirani, A. Mix Design Effective Parameters on γ-ray Attenuation Coefficient and Strength of Normal and Heavyweight Concrete. Constr. Build. 2012, 28 (1), 224–229; https://doi.org/10.1016/j.conbuildmat.2011.08.043.Search in Google Scholar
6. Brandt, A. M. Concrete as a Shielding Material in Nuclear Energy Constructions. Cem Wapno Beton. 2013, 2, 115–132.Search in Google Scholar
7. Shi, D.; Xia, Y.; Zhao, Y.; Ma, X.; Wang, J.; Liu, M.; Yu, K. Evaluation of Technical and Gamma Radiation Shielding Properties of Sustainable Ultra-high Performance Geopolymer Concrete. Constr. Build 2024, 436, 137003; https://doi.org/10.1016/j.conbuildmat.2024.137003.Search in Google Scholar
8. Alsafi, K.; Aloraini, D. A.; Almutairi, H. M.; Issa, S. A.; Zakaly, H. M.; Shaaban, K. S. Comprehensive Study of Optical, Thermal, and Gamma-Ray Shielding Properties of B2O3–SiO2–BeO–MgO–La2O3, Glasses. P Soc. Photo-Opt. Ins. 2024, 150, 115298; https://doi.org/10.1016/j.optmat.2024.115298.Search in Google Scholar
9. Almuqrin, A. H.; Sayyed, M. I.; Kumar, A.; Rilwan, U. Characterization of Glasses Composed of PbO, ZnO, MgO, and B2O3 in Terms of Their Structural, Optical, and Gamma Ray Shielding Properties. Nucl. Eng. Technol. 2024, 56 (7), 2842–2849; https://doi.org/10.1016/j.net.2024.02.047.Search in Google Scholar
10. Sayyed, M. I. Exploring the Impact of PbO in Improving the Gamma Radiation Shielding Characteristics of Silicate Glasses. Silicon 2024, 16 (4), 1535–1542; https://doi.org/10.1007/s12633-023-02776-x.Search in Google Scholar
11. Gaikwad, D. K.; Sayyed, M. I.; Obaid, S. S.; Issa, S. A.; Pawar, P. P. Gamma Ray Shielding Properties of TeO2-ZnF2-As2O3-Sm2O3 Glasses. J. Alloy Compd. 2018, 765, 451–458.10.1016/j.jallcom.2018.06.240Search in Google Scholar
12. Saleh, A.; Shalaby, R. M.; Abdelhakim, N. A. Comprehensive Study on Structure, Mechanical and Nuclear Shielding Properties of Lead-free Sn–Zn–Bi Alloys as a Powerful Radiation and Neutron Shielding Material. Radiat. Phys. Chem. 2022, 195, 110065; https://doi.org/10.1016/j.radphyschem.2022.110065.Search in Google Scholar
13. Wu, J.; Duan, Y.; Hu, J.; Zhai, Y.; Wang, Z.; Feng, Y.; Zhao, Z.; Fan, H.; Zhang, W.; Wang, K. Comprehensive Study on Structure, Shielding Properties of Ga-In-Sn-Bi-Zn Alloys: Potential Use for Low Energy Radiation. Phys. Scr. 2022, 97 (11), 115302; https://doi.org/10.1088/1402-4896/ac9a10.Search in Google Scholar
14. Rani, N.; Vermani, Y. K.; Singh, T. Gamma Radiation Shielding Properties of Some Bi-sn-zn Alloys. J. Radiol. Prot. 2020, 40 (1), 296; https://doi.org/10.1088/1361-6498/ab6aaf.Search in Google Scholar
15. Singh, J.; Singh, H.; Sharma, J.; Singh, T.; Singh, P. S. Fusible Alloys: a Potential Candidate for Gamma Rays Shield Design. Prog. Nucl. Energy 2018, 106, 387–395; https://doi.org/10.1016/j.pnucene.2018.04.002.Search in Google Scholar
16. Agar, O.; Sayyed, M. I.; Akman, F.; Tekin, H. O.; Kaçal, M. R. An Extensive Investigation on Gamma Ray Shielding Features of Pd/Ag-Based Alloys. Nucl. Eng. Technol. 2019, 51 (3), 853–859; https://doi.org/10.1016/j.net.2018.12.014.Search in Google Scholar
17. Saleh, A.; Mansour, F. E.; Abdelhakim, N. A. An Appropriate Balance of Mechanical and Ionized Radiation Shielding Performance across Some Tin Binary Alloys: A Comparative Investigation. Radiat. Phys. Chem. 2024, 221, 111726; https://doi.org/10.1016/j.radphyschem.2024.111726.Search in Google Scholar
18. Karataş, Ö.; Ercan, H. Ü.; Altın, M.; Oğul, H.; Bulut, F. Investigation of Gamma-Ray Radiation Shielding Properties of Zinc Borate and Paraffin Filled Sheep Wool Biopolymer Composites: Experimental and Theoretical Analysis. Radiat. Phys. Chem. 2025, 227, 112396; https://doi.org/10.1016/j.radphyschem.2024.112396.Search in Google Scholar
19. Caf, A.; Akman, F.; Oğul, H.; Kaçal, M. R. A Study on the Interaction Parameters of Charged and Uncharged Radiation Types with Some Indoor Plants. Appl. Radiat. Isot. 2024, 214, 111534; https://doi.org/10.1016/j.apradiso.2024.111534.Search in Google Scholar
20. Polat, E.; Gültekin, B.; Canoğlu, M. C.; Altınbaş, M.; Oğul, H. Production and Characterization of Ionizing Radiation Shielding Material from Algal Biomass. Radiat. Phys. Chem. 2024, 223, 111933; https://doi.org/10.1016/j.radphyschem.2024.111933.Search in Google Scholar
21. More, C. V.; Tarwal, N. L.; Botewad, S. N.; Anis, M.; Kutwade, V. V.; Akman, F.; Agar, O.; Pawar, P. P. Radiation Shielding Efficacy of Unsaturated Polyester Composites for Gamma and Neutron Attenuation-Enhanced with SnO2. Radiat. Phys. Chem. 2025, 229, 112484; https://doi.org/10.1016/j.radphyschem.2024.112484.Search in Google Scholar
22. Kassim, H.; Asemi, N. N.; Aldawood, S. Gamma-ray Shielding Enhancement Using Glycidyl Methacrylate Polymer Composites Reinforced by Titanium Alloy and Bismuth Oxide Nanoparticles. J. Radiat. Res. Appl. Sci. 2025, 18 (1), 101202; https://doi.org/10.1016/j.jrras.2024.101202.Search in Google Scholar
23. Ozdogan, H.; Kacal, M. R.; Kilicoglu, O.; Polat, H.; Ogul, H.; Akman, F. Experimental, Simulation, and Theoretical Investigations of Gamma and Neutron Shielding Characteristics for Reinforced with Boron Carbide and Titanium Oxide Composites. Radiat. Phys. Chem. 2025, 226, 112167; https://doi.org/10.1016/j.radphyschem.2024.112167.Search in Google Scholar
24. Ihsani, R. N.; Gareso, P. L.; Tahir, D. An Overview of Gamma Radiation Shielding: Enhancements through Polymer-Lead (Pb) Composite Materials. Radiat. Phys. Chem. 2024, 111619; https://doi.org/10.1016/j.radphyschem.2024.111619.Search in Google Scholar
25. Ogul, H.; Gultekin, B.; Bulut, F.; Us, H. A Comparative Study of 3D Printing and Sol-Gel Polymer Production Techniques: A Case Study on Usage of ABS Polymer for Radiation Shielding. Nucl. Eng. Technol. 2024, 56 (6), 1943–1949; https://doi.org/10.1016/j.net.2024.01.001.Search in Google Scholar
26. Gultekin, B.; Bulut, F.; Yildiz, H.; Us, H.; Ogul, H. Production and Investigation of 3D Printer ABS Filaments Filled with Some Rare-Earth Elements for Gamma-Ray Shielding. Nucl. Eng. Technol. 2023, 55 (12), 4664–4670; https://doi.org/10.1016/j.net.2023.09.009.Search in Google Scholar
27. Özdoğan, H.; Üncü, Y. A.; Akman, F.; Polat, H.; Kaçal, M. R. Detailed Analysis of Gamma-Shielding Characteristics of Ternary Composites Using Experimental, Theoretical and Monte Carlo Simulation Methods. Polymers 2024, 16 (13), 1778; https://doi.org/10.3390/polym16131778.Search in Google Scholar
28. Aldawood, S.; Asemi, N. N.; Kassim, H.; Aziz, A. A.; Saeed, W. S.; Al-Odayni, A. B. Gamma Radiation Shielding by Titanium Alloy Reinforced by Polymeric Composite Materials. JRRAS 2024, 17 (1), 100793; https://doi.org/10.1016/j.jrras.2023.100793.Search in Google Scholar
29. Abualroos, N. J.; Idris, M. I.; Ibrahim, H.; Kamaruzaman, M. I.; Zainon, R. Physical, Mechanical, and Microstructural Characterisation of Tungsten Carbide-Based Polymeric Composites for Radiation Shielding Application. Sci. Rep. 2024, 14 (1), 1375; https://doi.org/10.1038/s41598-023-49842-3.Search in Google Scholar
30. Cherkashina, N. I.; Pavlenko, V. I.; Shkaplerov, A. N.; Kuritsyn, A. A.; Sidelnikov, R. V.; Popova, E. V.; Umnova, L.; Domarev, S. N. Neutron Attenuation in Some Polymer Composite Material. ASR 2024, 73 (5), 2638–2651; https://doi.org/10.1016/j.asr.2023.12.003.Search in Google Scholar
31. Akman, F.; Ozdogan, H.; Kilicoglu, O.; Ogul, H.; Agar, O.; Kacal, M. R. & Tursucu, A. Gamma, Charged Particle and Neutron Radiation Shielding Capacities of Ternary Composites Having Polyester/barite/tungsten Boride. Radiat. Phys. Chem. 2023, 212, 111120.10.1016/j.radphyschem.2023.111120Search in Google Scholar
32. Özdemir, H. G.; Kaçal, M. R.; Akman, F.; Polat, H.; Agar, O. Investigation of Gamma Radiation Shielding Characteristics of Bismuth Reinforced Ternary Composites in Wide Photon Energy Region. Radiat. Phys. Chem. 2023, 208, 110924; https://doi.org/10.1016/j.radphyschem.2023.110924.Search in Google Scholar
33. Akman, F.; Ogul, H.; Ozkan, I.; Kaçal, M. R.; Agar, O.; Polat, H.; Dilsiz, K. Study on Gamma Radiation Attenuation and Non-ionizing Shielding Effectiveness of Niobium-Reinforce Novel 5olymer Composite. Nucl. Eng. Technol. 2022, 54 (1), 283–292; https://doi.org/10.1016/j.net.2021.07.006.Search in Google Scholar
34. Özkalaycı, F.; Kaçal, M. R.; Polat, H.; Agar, O.; Almousa, N.; Akman, F. Lead-Free Sb-Based Polymer Composite for γ-ray Shielding Purposes. Radiochim. Acta 2022, 110 (5), 393–402; https://doi.org/10.1515/ract-2022-0020.Search in Google Scholar
35. Asgari, M.; Afarideh, H.; Ghafoorifard, H.; Amirabadi, E. A. Comparison of Nano/micro Lead, Bismuth and Tungsten on the Gamma Shielding Properties of the Flexible Composites against Photon in Wide Energy Range (40 keV–662 keV). Nucl. Eng. Technol. 2021, 53 (12), 4142–4149; https://doi.org/10.1016/j.net.2021.06.022.Search in Google Scholar
36. More, C. V.; Alsayed, Z.; Badawi, M. S.; Thabet, A. A.; Pawar, P. P. Polymeric Composite Materials for Radiation Shielding: a Review. Environ. Chem. Lett. 2021, 19, 2057–2090; https://doi.org/10.1007/s10311-021-01189-9.Search in Google Scholar
37. Husain, H. S.; Naji, N. R.; Mahmood, B. M. Investigation of Gamma Ray Shielding by Polymer Composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 454 (1), 012131.10.1088/1757-899X/454/1/012131Search in Google Scholar
38. Li, R.; Gu, Y.; Yang, Z.; Li, M.; Hou, Y.; Zhang, Z. Gamma Ray Shielding Property, Shielding Mechanism and Predicting Model of Continuous Basalt Fiber Reinforced Polymer Matrix Composite Containing Functional Filler. Mater. Des. 2017, 124, 121–130; https://doi.org/10.1016/j.matdes.2017.03.045.Search in Google Scholar
39. Kaçal, M. R.; Polat, H.; Oltulu, M.; Akman, F.; Agar, O.; Tekin, H. O. Gamma Shielding and Compressive Strength Analyses of Polyester Composites Reinforced with Zinc: an Experiment, Theoretical, and Simulation-Based Study. Appl. Phys. A 2020, 126, 1–15.10.1007/s00339-020-3382-2Search in Google Scholar
40. Aldawood, S.; Asemi, N. N.; Kassim, H.; Aziz, A. A.; Saeed, W. S.; Al-Odayni, A. B. Gamma Radiation Shielding by Titanium Alloy Reinforced by Polymeric Composite Materials. J. Appl. Sci. Res. 2024, 17 (1), 100793; https://doi.org/10.1016/j.jrras.2023.100793.Search in Google Scholar
41. Oğul, H.; Agar, O.; Bulut, F.; Kaçal, M. R.; Dilsiz, K.; Polat, H.; Akman, F. A Comparative Neutron and Gamma-Ray Radiation Shielding Investigation of Molybdenum and Boron Filled Polymer Composites. Appl. Radiat. Isot. 2023, 194, 110731; https://doi.org/10.1016/j.apradiso.2023.110731.Search in Google Scholar
42. Gerward, L.; Guilbert, N.; Jensen, K. B.; Levring, H. WinXCom—a Program for Calculating X-Ray Attenuation Coefficients. Radiat. Phys. Chem. 2024, 71 (3-4), 653–654; https://doi.org/10.1016/j.radphyschem.2004.04.040.Search in Google Scholar
43. El-Sayed, A. W.; Fusco, M. A.; Bourham, M. A. Gamma-ray Mass Attenuation Coefficient and Half Value Layer Factor of Some Oxide Glass Shielding Materials. Ann. Nucl. Energy 2016, 96, 26–30; https://doi.org/10.1016/j.anucene.2016.05.028.Search in Google Scholar
44. Almurayshid, M.; Alsagabi, S.; Alssalim, Y.; Alotaibi, Z.; Almsalam, R. Feasibility of Polymer-Based Composite Materials as Radiation Shield. Radiat. Phys. Chem. 2021, 183, 109425; https://doi.org/10.1016/j.radphyschem.2021.109425.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Utilization of traceable standards to validate plutonium isotopic purification and separation of plutonium progeny using AG MP-1M resin for nuclear forensic investigations
- DFT study of Se(-II) sorption on biotite in reducing conditions
- 140Ba → 140La radionuclide generator: reverse-tandem scheme
- Estimation of valuable metals content in tin ore mining waste of the Russian Far East region by instrumental neutron activation analysis
- Optimizing vulcanized natural rubber: the role of phenolic natural antioxidants and ionizing radiation
- The gamma radiation shielding properties of tin-doped composites: experimental and theoretical comparison
- Effect of replacing ZnO with La2O3 on the physical, optical, and radiation shielding properties of lanthanum zinc tellurite
Articles in the same Issue
- Frontmatter
- Original Papers
- Utilization of traceable standards to validate plutonium isotopic purification and separation of plutonium progeny using AG MP-1M resin for nuclear forensic investigations
- DFT study of Se(-II) sorption on biotite in reducing conditions
- 140Ba → 140La radionuclide generator: reverse-tandem scheme
- Estimation of valuable metals content in tin ore mining waste of the Russian Far East region by instrumental neutron activation analysis
- Optimizing vulcanized natural rubber: the role of phenolic natural antioxidants and ionizing radiation
- The gamma radiation shielding properties of tin-doped composites: experimental and theoretical comparison
- Effect of replacing ZnO with La2O3 on the physical, optical, and radiation shielding properties of lanthanum zinc tellurite