140Ba → 140La radionuclide generator: reverse-tandem scheme
-
Jakhongir A. Dadakhanov
, Atanas I. Velichkov
Abstract
The paper introduces two reverse-tandem schemes of the 140Ba → 140La radionuclide generator which allow obtaining the daughter radionuclide 140La for different applications in nuclear spectroscopy and as a tracer for radiochemical separations. The tandem generator system includes two stages: a chromatographic separation of parent and daughter radionuclides based on the main reverse column (cation-exchange column), and purification based on tandem column (extraction column). The main chromatographic separation is carried out in acetic acid media. Use of 140La preparation with high specific activity in the perturbed angular γγ-correlation method is discussed.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. ENSDF: Evaluated Nuclear Structure Data File Search and Retrieval https://www.nndc.bnl.gov/ensdf/ From XUNDL - August 2013.Suche in Google Scholar
2. Nelson, B. J. B.; Andersson, J. D.; Radiolanthanum, F. W. F. Promising Theranostic Radionuclides for PET, Alpha, and Auger-Meitner Therapy. Nucl Med and Biol. 2022, 110-111, 59–66.10.1016/j.nucmedbio.2022.04.005Suche in Google Scholar
3. Narkevich, B. Y. A; Dolgushin, M. B.; Krylov, V. V; Meshcheryakova, N. A.; Nevzorov, D. I. Functional Optimization of Radionuclide Pairs in Theranostics of Prostate Cancer. J. Oncol. Diagn. Radiol. Radiother. 2020, 3 (1), 38–56; https://doi.org/10.37174/2587-7593-2020-3-1-38-56.Suche in Google Scholar
4. Silva, R. J. Chapter 13. Fermium, Nobelium, and Lawrencium In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R.Edelstein, N. M.Fuger, J.Eds.; Springer: Netherlands, 2011.10.1007/978-94-007-0211-0_13Suche in Google Scholar
5. Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar
6. Peppard, D. F.; Mason, G. W.; Moline, S. W. The Use of Dioctyl Phosphoric Acid Extraction in the Isolation of Carrier-free 90Y, 140La, 144Ce, 143Pr, and 144Pr. J. Inorg. Nucl. Chem. 1957, 5 (2), 141–146; https://doi.org/10.1016/0022-1902(57)80055-4.Suche in Google Scholar
7. Yamba, K.; Sanogo, O.; Kalinowski, M. B.; Nikkinen, M.; Koulidiati, J. Fast and Accurate Dating of Nuclear Events Using La-140/Ba-140 Isotopic Activity Ratio. Appl. Radiat. Isot. 2016, 112, 141–146; https://doi.org/10.1016/j.apradiso.2016.03.013.Suche in Google Scholar
8. Koda, Y.; Takagi, S. Separation of 140La from a 140Ba-140La Mixture by Co-precipitation with Ferric Hydroxide, Using Organic Bases as Precipitants. J. Inorg. Nucl. Chem. 1964, 26 (12), 2303–2304. https://doi.org/10.1016/0022-1902(64)80183-4.Suche in Google Scholar
9. Sarkar, S.; Bhattacharyya, S. N. Separation of 140Ba−140La by Reversed Phase Chromatography Using High Molecular Weight Amine. J. Radioanal. Chem. 1979, 54, 395–398; https://doi.org/10.1007/bf02517796.Suche in Google Scholar
10. Das, N. R.; Bhattacharyya, S. N. Ion Exchange Separation of Carrier-free 140Ba and 140La from Their Equilibrium Mixture Using Nitrilotriacetic Acid and Ascorbic Acid as Eluents. Int. J. Appl. Radiat. Isot 1982, 33 (3), 71–173; https://doi.org/10.1016/0020-708x(82)90107-7.Suche in Google Scholar
11. Dencker, L.; Nilsson, A.; Rönnbäck, C.; Walinder, G. Uptake and Retention of 133Ba and 140Ba-140La in Mouse Tissues. Acta Radiol. Ther. Phys. Biol. 1976, 15 (4), 273–287; https://doi.org/10.3109/02841867609131964.Suche in Google Scholar
12. Pomme, S.; Collins, S. M.; Harms, A.; Jerome, S. M. Fundamental Uncertainty Equations for Nuclear Dating Applied to the 140Ba-140La and 227Th-223Ra Chronometers. J. Environ. Radioact. 2016, 162-163, 358–370; https://doi.org/10.1016/j.jenvrad.2016.06.013.Suche in Google Scholar
13. Grummitt, W. E.; Milton, G. M. The Independent Yields of 140La, 90Y, and 91Y in the Thermal Neutron Fission of 235U and 233U. J. Inorg. Nucl. Chem. 1957, 5 (2), 93–104; https://doi.org/10.1016/0022-1902(57)80049-9.Suche in Google Scholar
14. Khalkin, V. A.; Lebedev, N. A. Spallation Produced Radiolanthanoides via Tantalum. Coprecipitation with Fluorides and Separation in Short Columns with Cation Exchange Resin. J. Radioanal. Nucl. Chem. 1985, 88, 153–160; https://doi.org/10.1007/bf02037314.Suche in Google Scholar
15. Filosofov, D. V.; Rakhimov, A. V.; Bozhikov, G. A.; Karaivaniv, D. K.; Lebedev, N. A.; Norseev, Y. U. V.; Sadikov, I. I. Isolation of Radionuclides from Thorium Targets Irradiated with 300-MeV Protons. Radiochemistry 2013, 55 (4), 410–417; https://doi.org/10.1134/s1066362213040127.Suche in Google Scholar
16. Bosch-Santos, B.; Carbonari, A. W.; Cabrera-Pasca, G. A.; Costa, M. S.; Saxena, R. N. Investigation of the Magnetic Hyperfine Field at R and Zn Sites in RZn (R = Gd, Tb, Dy) Compounds Using Perturbed Gamma-Gamma Angular Correlation Spectroscopy with 140Ce and 111Cd as Probe Nuclei. J. Appl. Phys. 2013, 113, 17E136; https://doi.org/10.1063/1.4798311.Suche in Google Scholar
17. Roesch, F.; Baum, R. P. Generator-Based PET Radiopharmaceuticals for Molecular Imaging of Tumors: On the Way to THERANOSTICS. Dalton Trans. 2011, 40, 6104–6111; https://doi.org/10.1039/c0dt01398f.Suche in Google Scholar
18. Lambrecht, R. M.; Tomiyoshi, K.; Sekine, T. Radionuclide Generators. Radiochim. Acta 1997, 77, 103–123; https://doi.org/10.1524/ract.1997.77.12.103.Suche in Google Scholar
19. Roesch, F.; Knapp, F. F. Radionuclide Generators. In Handbook of Nuclear Chemistry; Springer Science+Business Media B.V.: Germany; 2011; pp 1936–1976.10.1007/978-1-4419-0720-2_40Suche in Google Scholar
20. Chinol, M.; Hnatowich, D. J. Generator-Produced Yttrium-90 for Radioimmunotherapy. J. Nucl. Med. 1987, 28 (9), 1465–1470.Suche in Google Scholar
21. Guseva, L. I.; Dogadkin, N. N. Development of a Tandem Generator System 229Th/225Ac/213Bi for Repeated Production of Short-Lived α-Emitting Radionuclides. Radiochemistry 2009, 51 (2), 169–174; https://doi.org/10.1134/S1066362209020131.Suche in Google Scholar
22. Guseva, L. I. A Tandem Generator System for Production of 223Ra and 211Pb/211Bi in DTPA Solutions Suitable for Potential Application in Radiotherapy. J. Radioanal. Nucl. Chem. 2009, 281 (3), 577–583; https://doi.org/10.1007/s10967-009-0044-4.Suche in Google Scholar
23. Knapp, F. F.; Beets, A. L.; Mirzadeh, S.; Guhlke, S. Use of a New Tandem Cation/Anion Exchange System with Clinical-Scale Generators Provides High Specific Volume Solutions of Technetium-99m and Rhenium-188. In Proceedings of Modern Trends in Radiopharmaceuticals for Diagnosis and Therapy: Lisbon, Portugal, 1998; IAEA-TEC- DOC-1029 pp. 419–425. March 30–April 3.Suche in Google Scholar
24. Johnson, K.; Mcglynn, B.; Saggio, J.; Baniewicz, D.; Zhuang, H.; Maris, J. M.; Mosse, Y. P. Safety and Efficacy of Tandem 131I-Metaiodobenzylguanidine Infusions in Relapsed/Refractory Neuroblastoma. Pediatr. Blood Cancer 2011, 57, 1124–1129; https://doi.org/10.1002/pbc.Suche in Google Scholar
25. Filosofov, D. V.; Loktionova, N. S.; Rösch, F. A 44Ti/44Sc Radionuclide Generator for Potential Application of 44Sc-Based PET-Radiopharmaceuticals. Radiochim. Acta 2010, 98 (3), 149–156; https://doi.org/10.1524/ract.2010.1701.Suche in Google Scholar
26. Dadakhanov, Z. H. A.; Lebedev, N. A.; Velichkov, A. I.; Karaivanov, D. V.; Baimukhanova, A. E.; Temerbulatova, N. T.; Filosofov, D. V. 172Hf→172Lu Radionuclide Generator Based on a Reverse-Tandem Separation Scheme. Radiochemistry 2018, 60 (4), 415–426; https://doi.org/10.1134/s1066362218040112.Suche in Google Scholar
27. Mirzayev, N. A.; Mammadov, K. F.; Burmii, Z. P.; Karaivanov, D. V.; Kurakina, E. S.; Temerbulatova, N. T.; Baimukhanova, A.; Rakhimov, A. V.; Rozov, S. V.; Salimova, G. K.; Mirsagatova, A. A.; Sadikov, I. I.; Filosofov, D. V.; Yakushev, E. A. High-purity Ammonium Acetate Solution for Low-Background Electronics. J. Radioanal. Nucl. Chem. 2022, 331, 5539–5545. https://doi.org/10.1007/s10967-022-08608-3.Suche in Google Scholar
28. Dadakhanov, J.; Marinova, A.; Baimukhanova, A.; Karaivanov, D.; Temerbulatova, N.; Kozempel, J.; Roesch, F.; Filosofov, D. Sorption of Various Elements on Ion-Exchange Resins in Acetic Media. J. Radioanal. Nucl. Chem. 2021, 327, 1191–1199; https://doi.org/10.1007/s10967-021-07600-7.Suche in Google Scholar
29. Baimukhanova, A.; Engudar, G.; Marinov, G.; Kurakina, E.; Dadakhanov, J.; Karaivanov, D.; Yang, H.; Ramogida, C. F.; Schaffer, P.; Magomedbekov, E. P.; Filosofov, D.; Radchenko, V. An Alternative Radiochemical Separation Strategy for Isolation of Ac and Ra Isotopes from High Energy Proton Irradiated Thorium Targets for Further Application in Targeted Alpha Therapy. Nucl. Med. Biol. 2022, 112–113, 35–43; https://doi.org/10.1016/j.nucmedbio.2022.06.003.Suche in Google Scholar
30. Adloff, А. Р. Application to Chemistry of Electric Quadrupole Perturbation of Y-Y Angular Correlations//Radiochim. Acta 1978, 25 - P, 57–74. https://doi.org/10.1524/ract.1978.25.2.57.Suche in Google Scholar
31. Abragam, A.; Pound, R. V. Influence of Electric and Magnetic Fields on Angular Correlations. Phys. Rev. 1953, 92, 943–962; https://doi.org/10.1103/PhysRev.92.943.Suche in Google Scholar
32. Brudanin, V. B.; Filosofov, D. V.; Kochetov, O. I.; Korolev, N. A.; Milanov, M.; Ostrovskiy, I. V.; Pavlov, V. N.; Salamatin, A. V.; Timkin, V. V.; Velichkov, A. I.; Fomicheva, L. N.; Rsvyaschenko, A. V.; Akselrod, Z. Z. PAC Spectrometer for Condensed Matter Investigation. Nucl. Instrum. Methods Phys. Res., Sect. A 2005, 547 (2-3), 389–399.10.1016/j.nima.2005.04.002Suche in Google Scholar
33. Marsh, S. F.; Alarid, J. E.; Hammond, C. F.; McLeod, M. J.; Roensch, F. R.; Rein, J. E. Cation Exchange of 53 Elements in Nitric Acid. Los Alamos Sci. Lab. Rep. 1978, LA-7083, 1–9.Suche in Google Scholar
34. Filossofov, D. V.; Lebedev, N. A.; Novgorodov, A. F.; Bontchev, G. D.; Starodub, G. Y. Production, Concentration and Deep Purification of 111In Radiochemicals. Appl. Radiat. Isot. 2001, 55 (3), 293–295. https://doi.org/10.1016/S0969-8043(00)00376-6.Suche in Google Scholar
35. Mirzaev, N. A.; Marinova, A. P.; Mammadov, K. F.; Temerbulatova, N. T.; Kozempel, J.; Filosofov, D. V. Sorption of Metal Ions on an Anion-Exchange Resin in an Ammonium Acetate Solution. Russ. J. Phys. Chem. 2020, 94, 1190–1194. https://doi.org/10.1134/S0036024420060175.Suche in Google Scholar
36. Mirzayev, N. A.; Filosofov, D.; Mammadov, K. H.; De Jésus, M.; Karaivanov, D. V.; Ponomarev, D.; Rakhimov, A.; Rozova, I.; Rozov, S.; Temerbulatova, N.; Burmii, Z. H. P.; Yakushev, E. Low Radioactive NH4Cl Flux. J. Instrum. 2020, 15; https://doi.org/10.1088/1748-0221/15/05/T05004.Suche in Google Scholar
37. Mirzayev, N.; Marinova, A. P.; Marinov, G. M.; Mammadov, K.; Karandashev, V.; Rakhimov, A.; Baimukhanova, A.; Karaivanov, D. V.; Filosofov, D. V. Distribution Coefficients of 60 Elements on Cation and Anion-Exchange Resin in Ammonium Chloride Solutions. J. Solvent Extr. Ion Exch. 2019, 37 (6), 473–487.10.1080/07366299.2019.1679458Suche in Google Scholar
38. Pokatilov, V. S.; Salamatin, D. A.; Bokov, A. V.; Salamatin, A. V.; Velichkov, A. I.; Mikhin, M. V.; Grozdov, D. S.; Vergel, K. N.; Sigov, A. S.; Makarova, A. O.; Budzinski, M.; Tsvyashchenko, A. V. Hyperfine Interactions in the Bi1-xLaxFeO3ferrites (x=0.0225, 0.075, 0.9). Hyperfine Interact. 2021, 242 (1). https://doi.org/10.1007/s10751-021-01749-z.Suche in Google Scholar
39. Tanigaki, M.; Ohkubo, Y.; Taniguchi, A.; Kawase, Y.; Murakami, Y.; Goto, J.; Grain Boundaries, S. T. Interfaces, Defects and Localized Quantum Structures in Ceramics. Hyperfine Interaction of 140Ce(←140La) in CaB6. Mater. Trans. 2002, 43 (7), 1502–1505; https://doi.org/10.2320/matertrans.43.1502.Suche in Google Scholar
40. Krishnamurthy, V. V.; Tulapurkar, A. A.; Mishra, S. N.; Rainford, B. D.; Adroja, D. TDPAC Study of 140Ce Local Susceptibility in the Kondo Insulator System CeNi1 − xCoxSn. Physica B 1996, 223&224, 262–264. https://doi.org/10.1016/0921-4526(96)00094-4.Suche in Google Scholar
41. Ohkubo, Y.; Taniguchi, A.; Xu, Q.; Tanigaki, M.; Sato, K. TDPAC Studies of Interaction between He and A = 140 Elements in Fe. Hyperfine Interact. 2015, 230, 187–193; https://doi.org/10.1007/s10751-014-1085-9.Suche in Google Scholar
42. Herzog, P.; Klemme, B.; Schäfer, G. Static Electric Quadrupole Interaction of Ce and Pb Ions in Lead Titanate. Z. Phys. 1974, 269, 265–267.10.1007/BF01668692Suche in Google Scholar
43. Temerbulatova, N. T.; Tsvetkov, M. P.; Karaivanov, D. V.; Velichkov, A. I.; Filosofov, D. V.; Milanova, M. M. Rare Earths Doped Ferrites, Characterized by Time Differential γγ Perturbed Angle Correlations Method. J. Solid State Chem. 2019, 277, 281–289; https://doi.org/10.1016/j.jssc.2019.05.029.Suche in Google Scholar
44. Ezoddin, M.; Majidi, B.; Abdi, K.; Lamei, N. Magnetic Graphene-Dispersive Solid-phase Extraction for Preconcentration and Determination of Lead and Cadmium in Dairy Products and Water Samples. Bull. Environ. Contam. Toxicol. 2015, 95, 830–835; https://doi.org/10.1007/s00128-015-1663-9.Suche in Google Scholar
45. Kołodyńska, D.; Gęca, M.; Pylypchuk, I. V.; Hubicki, Z. Development of New Effective Sorbents Based on Nanomagnetite. Nanoscale Res. Lett. 2016, 11, Article 152; https://doi.org/10.1186/s11671-016-1371-3.Suche in Google Scholar
46. Melnyk, I. V.; Pogorilyi, R. P.; Zub, Y. U. L.; Vaclavikova, M.; Gdula, K.; Dąbrowski, A.; Seisenbaeva, G. A.; Kessler, V. G. Protection of Thiol Groups on the Surface of Magnetic Adsorbents and Their Application for Wastewater Treatment. Sci. Rep. 2018, 8, Article 8592; https://doi.org/10.1038/s41598-018-26767-w.Suche in Google Scholar
47. Vállez-Gomis, V.; Grau, J.; Benedé, J. L.; Chisvert, A. Magnetic Sorbents: Synthetic Pathways and Application in Dispersive (Micro)extraction Techniques for Bioanalysis. Trac. Trends Anal. Chem. 2024, 171, 117486; https://doi.org/10.1016/j.trac.2023.117486.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Utilization of traceable standards to validate plutonium isotopic purification and separation of plutonium progeny using AG MP-1M resin for nuclear forensic investigations
- DFT study of Se(-II) sorption on biotite in reducing conditions
- 140Ba → 140La radionuclide generator: reverse-tandem scheme
- Estimation of valuable metals content in tin ore mining waste of the Russian Far East region by instrumental neutron activation analysis
- Optimizing vulcanized natural rubber: the role of phenolic natural antioxidants and ionizing radiation
- The gamma radiation shielding properties of tin-doped composites: experimental and theoretical comparison
- Effect of replacing ZnO with La2O3 on the physical, optical, and radiation shielding properties of lanthanum zinc tellurite
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Utilization of traceable standards to validate plutonium isotopic purification and separation of plutonium progeny using AG MP-1M resin for nuclear forensic investigations
- DFT study of Se(-II) sorption on biotite in reducing conditions
- 140Ba → 140La radionuclide generator: reverse-tandem scheme
- Estimation of valuable metals content in tin ore mining waste of the Russian Far East region by instrumental neutron activation analysis
- Optimizing vulcanized natural rubber: the role of phenolic natural antioxidants and ionizing radiation
- The gamma radiation shielding properties of tin-doped composites: experimental and theoretical comparison
- Effect of replacing ZnO with La2O3 on the physical, optical, and radiation shielding properties of lanthanum zinc tellurite