Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
Abstract
In this study, three starch hydrogels composite prepared using different ratios of starch, citric acid, acrylamide, and MgO nanoparticles (referred to as St1-g-(CA-AM), St2-g-(CA-AM), and St3-g-(CA-AM) MgO). These materials were assessed using FT-IR, SEM, and EDX. The adsorption of 134Cs(I) and 60Co (II) onto these materials studied using radiometric analysis. The investigation focused on how temperature, contact duration, initial metal ion concentration, and pH of the solution affected the sorption efficiency. It is found that a pH value of 7 optimized the adsorption reaction, reaching equilibrium after 40 minutes. The kinetics of the adsorption followed a pseudo-second order model. The Langmuir model adequately explained the sorption mechanism, supported by the analysis of isotherm models. The monolayer adsorption capacities for 60Co (II) and 134Cs (I) were 113.38 and 100.2 mg g−1, respectively. The thermodynamic study indicated that the sorption process is both endothermic and spontaneous.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Maha Ali Youssef, Gehan Abdel Rahman Sadek Dakroury, and Hisham Soliman Hassan were involved in initial conception and design of the study. Maha Ali Youssef, Gehan Abdel Rahman Sadek Dakroury and Hisham Soliman Hassan were involved in data collection. Gehan Abdel Rahman Sadek Dakroury and Hisham Soliman Hassan contributed to the methodology. Maha Ali Youssef, and Hisham Soliman Hassan performed the analysis. Maha Ali Youssef and Gehan Abdel Rahman Sadek Dakroury wrote the original draft. All authors have substantially contributed to the study and revision of the paper.
-
Competing interests: The authors declare that they have no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Park, Y.-C.; Lee, W. C.; Shin, S.-J.; Choi, S. Removal of Cobalt, Strontium and Cesium from Radioactive Laundry Wastewater by Ammonium Molybdophosphate–Polyacrylonitrile (AMP–PAN). Chem. Eng. J. 2010, 162, 685–695. https://doi.org/10.1016/j.cej.2010.06.026.Suche in Google Scholar
2. Zhang, H.; Zhu, M.; Du, X.; Feng, S.; Miyamoto, N.; Kano, N. Removal of Cesium from Radioactive Waste Liquids Using Geomaterials. Appl. Sci. 2021, 11, 8407. https://doi.org/10.3390/app11188407.Suche in Google Scholar
3. Strand, P.; Sundell-Bergman, S.; Brown, J. E.; Dowdall, M. On the Divergences in Assessment of Environmental Impacts from Ionizing Radiation Following the Fukushima Accident. J. Environ. Radioact. 2017, 169–170, 159–173. https://doi.org/10.1016/j.jenvrad.2016.12.005.Suche in Google Scholar PubMed
4. Aliyu, A. S.; Nikolaos, E.; Timothy, A. M.; Wu, J.; Ramli, A. T. An Overview of Current Knowledge Concerning the Health and Environmental Consequences of the Fukushima Daiichi Nuclear Power Plant (FDNPP) Accident. Environ. Int. 2015, 7, 213–228. https://doi.org/10.1016/j.envint.2015.09.020.Suche in Google Scholar PubMed
5. Youssef, M. A.; El-Naggar, M. R.; Ahmed, I. M.; Attallah, M. F. Batch Kinetics of 134Cs and 152+154Eu Radionuclides onto Poly-Condensed Feldspar and Perlite Based Sorbents. J. Hazard. Mater. 2021, 403, 123945. https://doi.org/10.1016/j.jhazmat.2020.123945.Suche in Google Scholar PubMed
6. Cicek, E. Zeolite Used for Optimized Removal of Radioactive Cobalt with Response Surface Methodology. Düzce Univ. J. Sci. Tech. 2021, 9, 545–554. https://doi.org/10.29130/dubited.807860.Suche in Google Scholar
7. Youssef, M. A.; Sami, N. M.; Hassan, H. S. Extraction and Separation Feasibility of Cerium (III) and Lanthanum (III) from Aqueous Solution Using Modified Graphite Adsorbent. Environ. Sci. Pollut. Res. 2022, 29, 79649–79666. https://doi.org/10.1007/s11356-022-20823-9.Suche in Google Scholar PubMed PubMed Central
8. Tomar, R. S.; Gupta, I.; Singhal, R.; Nagpal, A. K. Synthesis of Poly(acrylamide-Co-Acrylic Acid)-Based Super-Absorbent Hydrogels by Gamma Radiation: Study of Swelling Behavior and Network Parameters. Des. Monomers Polym. 2007, 10, 49–66. https://doi.org/10.1163/156855507779763685.Suche in Google Scholar
9. Zou, W.; Liu, X.; Yu, L.; Qiao, D.; Chen, L.; Liu, H.; Zhang, N. Synthesis and Characterization of Biodegradable Starch-Polyacrylamide Graft Copolymers Using Starches with Different Microstructures. J. Polym. Environ. 2013, 21, 359–365. https://doi.org/10.1007/s10924-012-0473-y.Suche in Google Scholar
10. Comer, C. M.; Jessop, J. L. R. Evaluation of Novel Back-Flush Filtration for Removal of Homopolymer from Starch-g-PMMA. Starch-Stärke 2008, 60, 335. https://doi.org/10.1002/star.200700709.Suche in Google Scholar
11. Zou, W.; Yu, L.; Liu, X.; Qiao, D. L.; Zhang, X.; Chen, L.; Zhang, R. Effects of Amylose/Amylopectin Ratio on Starch-Based Superabsorbent Polymers. Carbohydr. Polym. 2012, 87, 1583. https://doi.org/10.1016/j.carbpol.2011.09.060.Suche in Google Scholar
12. Dakroury, G. A.; Maree, R. M.; El-Shazly, E. A. A.; Allan, K. F. Synthesize of Poly (Acrylamide-Co-itaconic/TiO2) Nanocomposite for Ce(III) Sorption from Monazite Leachate. J. Polym. Environ. 2022, 30, 1942–1958. https://doi.org/10.1007/s10924-021-02320-1.Suche in Google Scholar
13. Ahmed, M. A.; Abou-Gamra, Z. M. Mesoporous MgO Nanoparticles as a Potential Sorbent for Removal of Fast Orange and Bromophenol Blue Dyes. Nanotechnol. Environ. Eng. 2016, 1, 10. https://doi.org/10.1007/s41204-016-0010-7.Suche in Google Scholar
14. Samsonov, G.; Vlasova, M.; Kakazey, N.; Grigorjev, B.; Uskoković, D. P.; Ristic, M. M. Study of Elementary Mechanism during Sintering of MgO with Mn2O3, MnO2 and NiO Additives. J. de Phys. Collo. 1976, 37, 415–422.10.1051/jphyscol:1976795Suche in Google Scholar
15. Beheshtian, J.; Peyghan, A. A.; Bagheri, Z.; Kamfiroozi, M. The Alkali Metal Interactions with MgO Nanotubes. Bull. Korean Chem. Soc. 2012, 33, 1925–1928. https://doi.org/10.5012/bkcs.2012.33.6.1925.Suche in Google Scholar
16. Dakroury, G. A.; Abo-Zahra, Sh.F.; Hassan, H. S. Utilization of Olive Pomace in Nano MgO Modification for Sorption of Ni(II) and Cu(II) Metal Ions from Aqueous Solutions. Arab. J. Chem. 2020, 13, 6510–6522. https://doi.org/10.1016/j.arabjc.2020.06.008.Suche in Google Scholar
17. Czarnecka, E.; Nowaczyk, J. Semi-Natural Superabsorbents Based on Starch-G-Poly(acrylic Acid): Modification, Synthesis and Application. Polymers 2020, 12, 1794. https://doi.org/10.3390/polym12081794.Suche in Google Scholar PubMed PubMed Central
18. Sujatha, S. Preparation and Evaluation of Starch Citrate: A New Modified Starch as Directly Compressible Vehicle in Tablet Formulations. Int. J. Chem. Sci. 2011, 9, 177–187.Suche in Google Scholar
19. Shahmohammadi-Kalalagh, S.; Babazadeh, H. Isotherms for the Sorption of Zinc and Copper onto Kaolinite: Comparison of Various Error Functions. Int. J. Environ. Sci. Tech. 2014, 11, 111–118. https://doi.org/10.1007/s13762-013-0260-x.Suche in Google Scholar
20. Batool, F.; Akbar, J.; Iqbal, S.; Noreen, S.; Bukhari, S. N. A. Study of Isothermal Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. J. Bioinorg. Chem. Appl. 2018, 1–11, https://doi.org/10.1155/2018/3463724.Suche in Google Scholar PubMed PubMed Central
21. Renan, V.; Masini, J. C: Nonlinear Regression for Treating Adsorption Isotherm Data to Characterize New Sorbents: Advantages Over Linearization Demonstrated with Simulated and Experimental Data. Heliyon 2023, 9, e15128. https://doi.org/10.1016/j.heliyon.2023.e15128.Suche in Google Scholar PubMed PubMed Central
22. Çelik, M. Preparation and Characterization of Starch-g-Polymethacrylamide Copolymers. J. Polym. Res. 2006, 13, 427–432. https://doi.org/10.1007/s10965-006-9063-9.Suche in Google Scholar
23. Bdewi, S. F.; Abdullah, O. G.; Aziz, B. K.; Mutar, A. A. R. Synthesis, Structural and Optical Characterization of MgO Nanocrystalline Embedded in PVA Matrix. J. Inorg. Organomet. Polym. 2015, 26, 326–334. https://doi.org/10.1007/s10904-015-0321-3.Suche in Google Scholar
24. Puigdomenech, I. Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA). Inorg. Chem.; Royal Institute of Technology: Stockholm, Sweden, 2013.Suche in Google Scholar
25. Keirudin, A. A.; Zainuddin, N.; Yusof, N. A. Crosslinked Carboxymethyl Sago Starch/Citric Acid Hydrogel for Sorption of Pb2+, Cu2+, Ni2+ and Zn2+ from Aqueous Solution. Polymers 2020, 12, 2465. https://doi.org/10.3390/polym12112465.Suche in Google Scholar PubMed PubMed Central
26. Ali, I. M.; Madbouly, H. A.; El-Shorbagy, M. M. 152/154Eu(III) Ions Sorption on Stannic Silicate Granules: A Radiotracer Study. Chem. Sci. Trans. 2019, 8, 180–194. https://doi.org/10.7598/cst2019.1565.Suche in Google Scholar
27. Gad, H. M. H.; Youssef, M. A. Sorption Behavior of Eu(III) from an Aqueous Solution onto Modified Hydroxyapatite: Kinetics, Modeling and Thermodynamics. Environ. Tech. 2018, 39, 2583–2596. https://doi.org/10.1080/09593330.2017.1362036.Suche in Google Scholar PubMed
28. Abdel Maksoud, M. I. A.; Murad, G. A.; Zaher, W. F.; Hassan, H. S. Adsorption and Separation of Cs(I) and Ba(II) from Aqueous Solution Using Zinc Ferrite-Humic Acid Nanocomposite. Sci. Rep. 2023, 13, 5856. https://doi.org/10.1038/s41598-023-32996-5.Suche in Google Scholar PubMed PubMed Central
29. Chanda, D. K.; Mukherjee, D.; Das, P. S.; Ghosh, C. K.; Mukhopadhyay, A. K. Toxic Heavy Metal Ion Adsorption Kinetics of Mg(OH)2 Nanostructures with Superb Efficacies. Mater. Res. Express 2018, 5, 075027. https://doi.org/10.1088/2053-1591/aad0d3.Suche in Google Scholar
30. Swelam, A. A.; Salem, A. M. A.; Ayman, A. A.; Farghly, A. Kinetic and Thermodynamic Sorption Study of Coblt Removal from Water Solution with Magnetic Nano-Hydroxyapatite. Al Azhar Bull. Sci. 2018, 29, 45–58.10.21608/absb.2018.33749Suche in Google Scholar
31. Moussa, S. I.; Mekawy, Z. A.; Dakroury, G. A.; Mousa, A. M.; Allan, K. F. Linear and Non Linear Recognition for the Sorption of 60Co and 152+154Eu Radionuclides onto Bio CuO Nanocomposite. J. Polym. Environ. 2023, 31, 2148–2165. https://doi.org/10.1007/s10924-022-02735-4.Suche in Google Scholar
32. Cheung, C. W.; Porter, J. F.; McKay, G. Sorption Kinetics for the Removal of Copper and Zinc from Effluents Using Bone Char. Sep. Purif. Technol. 2000, 19, 55–64. https://doi.org/10.1016/S1383-5866(99)00073-8.Suche in Google Scholar
33. Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. https://doi.org/10.1061/JSEDAI.0000430.Suche in Google Scholar
34. El-khalafawy, A.; Imam, D. M.; Youssef, M. A. Enhanced Biosorption of Europium and Cesium Ions from Aqueous Solution onto Phalaris Seed Peel as Environmental Friendly Biosorbent: Equilibrium and Kinetic Studies. Appl. Radiat. Isot. 2022, 190, 110498. https://doi.org/10.1016/j.apradiso.2022.110498.Suche in Google Scholar PubMed
35. Ho, Y. S.; McKay, G. Application of Kinetic Models to the Sorption of Copper(II) on to Peat. Adsorp. Sci. Technol. 2002, 20, 797–815. https://doi.org/10.1260/026361702321104282.Suche in Google Scholar
36. Imam, D. M.; Moussa, S. I.; Attallah, M. F. Sorption Behavior of Some Radionuclides Using Prepared Adsorbent of Hydroxyapatite from Biomass Waste Material. J. Radioanal. Nucl. Chem. 2019, 319, 997–1012. https://doi.org/10.1007/s10967-018-06403-7.Suche in Google Scholar
37. Gokmen, G. V.; Serpen, A. Equilibrium and Kinetic Studies on the Adsorption of Dark Colored Compounds from Apple Juice Using Adsorbent Resin. J. Food Eng. 2002, 53, 221–227. https://doi.org/10.1016/S0260-8774(01)00160-1.Suche in Google Scholar
38. Dakroury, G. A.; Ali, S. M.; Hassan, H. S. Assessment of Adsorption Performance of chitosan/ZrO2 Biosorbent Composite towards Cs (I) and Co (II) Metal Ions from Aqueous Solution. J. Polym. Res. 2021, 28, 385. https://doi.org/10.1007/s10965-021-02753-1.Suche in Google Scholar
39. Sevim, F.; Laci, O.; Ediz, E. F.; Demir, F. Adsorption Capacity, Isotherm, Kinetic, and Thermodynamic Studies on Adsorption Behavior of Malachite Green onto Natural Red Clay. Environ. Prog. Sustain. Energy 2021, 40, e13471. https://doi.org/10.1002/ep.13471.Suche in Google Scholar
40. Osinska, M. Removal of Lead(II), Copper(II), Cobalt(II) and Nickel(II) Ions from Aqueous Solutions Using Carbon Gels. J. Sol. Gel Sci. Technol. 2017, 81, 678–692. https://doi.org/10.1007/s10971-016-4256-0.Suche in Google Scholar
41. IAEA. Management of Spent High Activity Radioactive Sources (SHARS); IAEA-TECDOC-1301, A-1400: Vienna, Austria, 2002.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2024-0295).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm
- Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution
- Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
- Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution
- Synthesis, in silico and biodistribution studies of a novel 47Sc-radiolabeled α-amino acid ester derivative attached to pyrazine and tetrazole rings for tumor targeted radiotherapy
- [113mIn]In-PSMA: high potential agent for SPECT imaging of prostate cancer
- Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles
- Identification and time evolution of thionyl chloride (SOCl2) radiolysis products
- Measurement of gross alpha radioactivity levels and estimation of annual effective dose in hazelnut kernels
- Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm
- Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution
- Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
- Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution
- Synthesis, in silico and biodistribution studies of a novel 47Sc-radiolabeled α-amino acid ester derivative attached to pyrazine and tetrazole rings for tumor targeted radiotherapy
- [113mIn]In-PSMA: high potential agent for SPECT imaging of prostate cancer
- Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles
- Identification and time evolution of thionyl chloride (SOCl2) radiolysis products
- Measurement of gross alpha radioactivity levels and estimation of annual effective dose in hazelnut kernels
- Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy