Abstract
Independent isomeric yield ratios (IR) of 128,130,132Sb, 131,133Te, 132,134I, 135Xe and 138Cs in the epi-cadmium neutron-induced fission of 245Cm have been measured for the first time by using an off-line gamma-ray spectrometric technique. The average energy of the epi-cadmium neutron spectrum (<E n >) is 1.9 MeV. From the IR values, root mean square fragment angular momenta (J RMS) were deduced by using the spin dependent statistical model analysis. The IR and JRMS values of the fission products from the present work were compared with the literature data in the thermal neutron-induced fission of 245Cm to examine the role of excitation energy. Effect of nuclear structure on J RMS value was also examined.
Acknowledgments
All persons who have made substantial contributions to the work reported in the manuscript (e.g., technical help, writing and editing assistance, general support), but who do not meet the criteria for authorship, are named in the Acknowledgements and have given us their permission to be named.
-
Research ethics: The research ethics of Radiochima Acta have been followed by the authors in submitting the manuscript.
-
Author contributions: Haladhara Naik – Conception, design, experiment, data aqusation, analysis and interpretaion of data and drafting of manuscript. Ram Janam Singh – Experiment and data aqusation, approval of manuscript. Srikant Pandurang Dange – Experiment and data aqusation, revising and approval of manuscript. Wooyoung Jang – Analysis and interpretation of data, approval of manuscript.
-
Competing interests: The authors declare that we have no known competing interests or personal relationships that could have appeared to influence the work reported in the manuscript entitled “Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm”.
-
Research funding: No funding is available.
-
Data availability: Data are provided in table during submission of manuscript. No other data are available.
References
1. Huizenga, J. R.; Vandenbosch, R. Interpretation of Isomeric Cross-Section Ratios for (N, γ) and (γ, N) Reactions. Phys. Rev. 1960, 120, 1305; https://doi.org/10.1103/physrev.120.1305.Suche in Google Scholar
2. Haffner, W. L.; Huizenga, J. R.; Vandenbosch, R. Argonne National Laboratory Report ANL-6662, 1962. (unpublished).Suche in Google Scholar
3. Nix, J. R.; Swiatecki, W. J. Studies in the Liquid-Drop Theory of Nuclear Fission. Nucl. Phys. 1965, 71, 1; https://doi.org/10.1016/0029-5582(65)90038-6.Suche in Google Scholar
4. Rasmussen, J. O.; Norenberg, W.; Mang, H. J. A Model for Calculating the Angular Momentum Distribution of Fission Fragments. Nucl. Phys. 1969, A136, 465; https://doi.org/10.1016/0375-9474(69)90066-9.Suche in Google Scholar
5. Hoffman, M. M. Directional Correlation of Fission Fragments and Prompt Gamma Rays Associated with Thermal Neutron Fission. Phys. Rev. 1964, 133, B714; https://doi.org/10.1103/physrev.133.b714.Suche in Google Scholar
6. Strutinskii, V. M. Angular Anisotropy of Gamma Quanta that Accompany Fission. Sov. Phys. (JETP) 1960, 10, 613.Suche in Google Scholar
7. Wilhelmy, J. W.; Cheifetz, E.; Jared, R. C.; Thompson, S. G.; Bowman, H. R.; Rasmussen, J. R. Angular Momentum of Primary Products Formed in the Spontaneous Fission of 252Cf. Phys. Rev. 1972, C5, 2041.10.1103/PhysRevC.5.2041Suche in Google Scholar
8. Bocquet, J. P.; Schussler, F.; Monnand, E.; Sistemich, K. Effect of Fragment Kinetic Energy on the Supply of Isomeric States in 236U Fission. In Proceedings of the Fourth IAEA Symposium on Physics and Chemistry of Fission, Julich, 1979; IAEA: Vienna, Vol. II, 1980; p 179.Suche in Google Scholar
9. Denschlag, H. O.; Braun, H.; Faubel, W.; Fischbach, G.; Meixler, H.; Paffarth, G.; Porsch, W.; Weis, M.; Schrader, H.; Siegert, G.; Blachot, J.; Alfassi, Z. B.; Erten, H. N.; Izak-biran, T.; Tamai, T.; Wahl, A. C.; Wolfsberg, K. Distribution of Nuclear Charge and Angular Momentum in Charges 132–137, 99 and 102 of 235U(nth, F) at Various Kinetic Energies and Ionic Charge States of the Fragments. In Proceedings of the Fourth IAEA Symposium on Physics and Chemistry of Fission, Julich, 1979; IAEA: Vienna, Vol. II, 1980; p 153.Suche in Google Scholar
10. Sarantities, D. G.; Gordon, G. E.; Coryell, C. D. Ratios of Independent Yields of the Isomers Te131−131𝑚 and Te133−133𝑚 in Fission. Phys. Rev. 1965, 138, B353; https://doi.org/10.1103/physrev.138.b353.Suche in Google Scholar
11. Aumann, D. C.; Guckel, W.; Nirschi, E.; Zeising, H. Independent Isomeric Yield Ratio of 148Pm in Fission of the Moderately Excited 236U Compound Nucleus as a Measure of Fragment Angular Momentum. Phys. Rev. 1977, C16, 254.10.1103/PhysRevC.16.254Suche in Google Scholar
12. Imanishi, N.; Fujiwara, I.; Nishi, T. Independent Isomer Yields of Sb and Te Isotopes in Thermal-Neutron Fission of 233U, 235U and 239Pu. Nucl. Phys. 1976, A263, 141; https://doi.org/10.1016/0375-9474(76)90189-5.Suche in Google Scholar
13. Fujiwara, I.; Imanishi, N.; Nishi, T. Isomer-Yield Ratiosand Primary Angular Momenta of I, Xe an Cs Isotopes Produced in Thermal-Neutron Fission of 233U, 235U and 239Pu. J. Phys. Soc. Jpn. 1982, 51, 1713; https://doi.org/10.1143/jpsj.51.1713.Suche in Google Scholar
14. Datta, T.; Dange, S. P.; Nair, A. G. C.; Datta; Prakash, S.; Ramaniah, M. V. Fission Fragment Angular Momentum: Ratios of Independent Yields of Isomers of 95Nb and 132I in Thermal-Neutron-Induced Fission of 233U. Phys. Rev. 1982, C25, 358.Suche in Google Scholar
15. Ford, G. P.; Wolfsberg, K.; Erdal, B. R. Independent Yields of the Isomers of 133Xe and 135Xe for Neutron-Induced Fission of 233U, 235U, 238U, and 242Amm. Phys. Rev. C 1984, 30, 195.Suche in Google Scholar
16. Tomar, B. S.; Goswami, A.; Das, S. K.; Data, T.; Prakash, S.; Ramaniah, M. V. Fission Fragment Angular Momentum: Independent Isomeric Yield Ratio of 138Cs in Thermal Neutron Induced Fission of 233U, 239Pu and 241Pu. Radiochim. Acta 1985, 39, 1; https://doi.org/10.1524/ract.1985.39.1.1.Suche in Google Scholar
17. Dange, S. P.; Naik, H.; Datta, T.; Reddy, A. V. R.; Prakash, S.; Ramaniah, M. V. Dependence of the Angular Momenta of Fission Fragments on Their Nuclear Structure. Radiochim. Acta 1986, 39, 127; https://doi.org/10.1524/ract.1986.39.3.127.Suche in Google Scholar
18. Dange, S. P.; Naik, H.; Datta, T.; Guin, R.; Prakash, S.; Ramaniah, M. V. Effect of Shell Closure Proximity on Fragment Angular Momentum in 241Pu(nth, F). J. Radioanal. Nucl. Chem. Lett. 1986, 108, 269; https://doi.org/10.1007/bf02165185.Suche in Google Scholar
19. Tomar, B. S.; Goswami, A.; Das, S. K.; Datta, T.; Srivastava, B. K.; Nair, A. G. C.; Prakash, S.; Ramaniah, M. V. Fragment Angular Momenta in Low and Medium Energy Fission of 242Pu, Z. Phys. Atom. Nuclei 1987, A327, 225.10.1007/BF01292412Suche in Google Scholar
20. Naik, H.; Datta, T.; Dange, S. P.; Pujari, S. P.; Prakash, S.; Ramaniah, M. V. Correlations of Fission Fragment Angular Momentum with Collective and Intrinsic Degrees of Freedom. Z. Phys. Atoms and Nuclei 1988, A331, 335; https://doi.org/10.1007/bf01355605.Suche in Google Scholar
21. Tomar, B. S.; Goswami, A.; Reddy, A. V. R.; Das, S. K.; Manohar, S. B.; Prakash, S. Independent Isomeric Yield Ratios of 132Sb in 241Pu(nth, F) and 238U(α, F). Radiochim. Acta 1991, 55, 173; https://doi.org/10.1524/ract.1991.55.4.173.Suche in Google Scholar
22. Naik, H.; Dange, S. P.; Singh, R. J.; Datta, T. Systematics of Fragment Angular Momentum in Low-Energy Fission of Actinides. Nucl. Phys. 1995, A587, 273; https://doi.org/10.1016/0375-9474(94)00821-4.Suche in Google Scholar
23. Naik, H.; Dange, S. P.; Singh, R. J. Angular Momentum of Fission Fragments in Low Energy Fission of Actinides. Phys. Rev. C 2005, 71, 014304; https://doi.org/10.1103/physrevc.71.014304.Suche in Google Scholar
24. Naik, H.; Singh, R. J.; Iyer, R. H. Fission Fragment Angular Momentum in the Spontaneous Fission of 244Cm. Radiochim. Aca 2004, 92, 1; https://doi.org/10.1524/ract.92.1.1.25406.Suche in Google Scholar
25. Datta, T.; Dange, S. P.; Das, S. K.; Datta, Prakash, S.; Ramaniah, M. V. Influence of Fission Fragment Nuclear Structure on Scission Configuration in252Cf (S.F.). Z. Phys. Atom. Nuclei 1986, A324, 81; https://doi.org/10.1007/bf01290758.Suche in Google Scholar
26. Naik, H.; Dange, S. P.; Singh, R. J. Fission Fragment Angular Momentum in ODD-Z Fissioning Systems. Eur. Phys. J. 2000, A7, 377; https://doi.org/10.1007/s100500050405.Suche in Google Scholar
27. Naik, H.; Dange, S. P.; Singh, R. J.; Reddy, A. V. R. Single-particle Spin Effect on Fission Fragment Angular Momentum. Eur. Phys. J. 2007, A31, 195; https://doi.org/10.1140/epja/i2006-10171-0.Suche in Google Scholar
28. Naik, H.; Singh, R. J.; Dange, S. P.; Jang, W. Independent Isomeric Yield Ratios of Fission Products in the Epi-Cadmium Neutron Induced Fission of 241Pu. Radiochim. Acta 2023, 111, 793; https://doi.org/10.1515/ract-2023-0177.Suche in Google Scholar
29. Wilson, J. N.; Thisse, D.; Lebois, M.; Jovančević, N.; Gjestvang, D.; Canavan, R.; Rudigier, M.; Étasse, D.; Gerst, R. B.; Gaudefroy, L.; Adamska, E.; Adsley, P.; Algora, A.; Babo, M.; Belvedere, K.; Benito, J.; Benzoni, G.; Blazhev, A.; Boso, A.; Bottoni, S.; Bunce, M.; Chakma, R.; Cieplicka-Oryńczak, N.; Courtin, S.; Cortés, M. L.; Davies, P.; Delafosse, C.; Fallot, M.; Fornal, B.; Fraile, L.; Gottardo, A.; Guadilla, V.; Häfner, G.; Hauschild, K.; Heine, M.; Henrich, C.; Homm, I.; Ibrahim, F.; Iskra, Ł. W.; Ivanov, P.; Jazrawi, S.; Korgul, A.; Koseoglou, P.; Kröll, T.; Kurtukian-Nieto, T.; Le Meur, L.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I.; Miernik, K.; Nemer, J.; Oberstedt, S.; Paulsen, W.; Piersa, M.; Popovitch, Y.; Porzio, C.; Qi, L.; Ralet, D.; Regan, P. H.; Rezynkina, K.; Sánchez-Tembleque, V.; Siem, S.; Schmitt, C.; Söderström, P. A.; Sürder, C.; Tocabens, G.; Vedia, V.; Verney, D.; Warr, N.; Wasilewska, B.; Wiederhold, J.; Yavahchova, M.; Zeiser, F.; Ziliani, S. Angular Momentum Generation in Nuclear Fission. Nature 2021, 590, 566; https://doi.org/10.1038/s41586-021-03304-w.Suche in Google Scholar PubMed
30. Randrup, J.; Vogt, R. Generation of Fragment Angular Momentum in Fission. Phys. Rev. Lett. 2021, 127, 062502; https://doi.org/10.1103/physrevlett.127.062502.Suche in Google Scholar PubMed
31. Sears, C. J.; A.Mattera, A.; McCutchan, E. A.; Sonzogni, A. A.; Brown, D. A.; Potemkin, D. Compilation and Evaluation of Isomeric Fission Yield Ratios. Nucl. Data Sheets 2021, 173, 118–143. https://doi.org/10.1016/j.nds.2021.04.005.Suche in Google Scholar
32. IAEA-EXFOR Database Version of 2020-01-28. http://www-nds.iaea.org/exfor.Suche in Google Scholar
33. Otsuka, N.; Dupont, E.; Semkova, V.; Pritychenko, B.; Blokhin, A. I.; Aikawa, M.; Babykina, S.; Bossant, M.; Chen, G.; Dunaeva, S.; Forrest, R. A.; Fukahori, T.; Furutachi, N.; Ganesan, S.; Ge, Z.; Gritzay, O. O.; Herman, M.; Lalremruata, B.; Lee, Y. O.; Makinaga, A.; Matsumoto, K.; Mikhaylyukova, M.; Pikulina, G.; Pronyaev, V. G.; Saxena, A.; Schwerer, O.; Simakov, S. P.; Soppera, N.; Suzuki, R.; Tao, X.; Taova, S.; Varlamov, V. V.; Wang, J.; Yang, S. C.; Zerkin, V.; Zhuang, Y.; Yang, S.; Zhuang, Y. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets 2014, 120, 272. https://doi.org/10.1016/j.nds.2014.07.065.Suche in Google Scholar
34. Iyer, R. H.; Naik, H.; Pandey, A. K.; Kalsi, P. C.; Singh, R. J.; Ramaswami, A.; Nair, A. G. C. Measurement of Absolute Fission Yields in the Fast Neutron–Induced Fission of Actinides: 238U, 237Np, 238Pu, 240Pu, 243Am, and 244Cm by Track-Etch -Cum-Gamma Spectrometry. Nucl. Sci. Eng. 2000, 1335, 1–19; https://doi.org/10.13182/nse00-a2136.Suche in Google Scholar
35. NuDat 3.0, National Nuclear Data Center Brookhaven National Laboratory. https://www.nndc.bnl.gov/nudat/.Suche in Google Scholar
36. Browne, E.; Firestone, R. B.; Shirley, V. S., Eds. Table of Radioactive Isotopes; Wiley: New York, 1986.Suche in Google Scholar
37. Blachot, J.; Fiche, Ch. Tableau des isotopes radioactifs et des principaux rayonnements emis. Ann. Phys. 1981, 6, 3–218; https://doi.org/10.1051/anphys/198106060003s.Suche in Google Scholar
38. Naik, H.; Singh, R. J.; Jang, W.; Dange, S. P. Post-Neutron Mass Yield Distribution in the Epi-Cadmium Neutron Induced Fission of 245Cm. Nucl. Sci. Eng. 2023, 197, 1279. https://doi.org/10.1080/00295639.2022.2153577.Suche in Google Scholar
39. Al-Adilia, A.; Rakopoulos, V.; Solders, A. Extraction of Angular Momenta from Isomeric Yield Ratios. Eur. Phys. J. 2019, A 55, 61; https://doi.org/10.1140/epja/i2019-12731-5.Suche in Google Scholar
40. Stetcu, I.; Lovell, A. E.; Talou, P.; Kawano, T.; Marin, S.; Pozzi, S. A.; Bulgac, A. Angular Momentum Removal by Neutron and 𝛾-Ray Emissions during Fission Fragment Decays. Phys. Rev. Lett. 2021, 127, 222502; https://doi.org/10.1103/physrevlett.127.222502.Suche in Google Scholar
41. Dicknes, J. K.; Connell, J. W. Yields of Fission Products Produced by Thermal-Neutron Fission of 245Cm. Phys. Rev. C 1981, 23, 331; https://doi.org/10.1103/physrevc.23.331.Suche in Google Scholar
42. Wilkins, B. D.; Steinberg, E. P.; Chasman, R. R. Scission-point Model of Nuclear Fission Based on Deformed-Shell Effects. Phys. Rev. C 1976, 14, 1832; https://doi.org/10.1103/physrevc.14.1832.Suche in Google Scholar
43. Madsen, V. A.; Brown, H. R. Schematic Model for the Differences between Neutron and Proton Quadrupole Deformation Parameters in Open-Shell Nuclei. Phys. Rev. Lett. 1984, 52, 176; https://doi.org/10.1103/physrevlett.52.176.Suche in Google Scholar
44. Schultheis, S.; Schultheis, R. Empirical Limitations of Energy Dissipation in 252Cf(sf). Phys. Rev. C 1978, 18, 1317; https://doi.org/10.1103/physrevc.18.1317.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm
- Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution
- Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
- Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution
- Synthesis, in silico and biodistribution studies of a novel 47Sc-radiolabeled α-amino acid ester derivative attached to pyrazine and tetrazole rings for tumor targeted radiotherapy
- [113mIn]In-PSMA: high potential agent for SPECT imaging of prostate cancer
- Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles
- Identification and time evolution of thionyl chloride (SOCl2) radiolysis products
- Measurement of gross alpha radioactivity levels and estimation of annual effective dose in hazelnut kernels
- Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm
- Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution
- Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
- Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution
- Synthesis, in silico and biodistribution studies of a novel 47Sc-radiolabeled α-amino acid ester derivative attached to pyrazine and tetrazole rings for tumor targeted radiotherapy
- [113mIn]In-PSMA: high potential agent for SPECT imaging of prostate cancer
- Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles
- Identification and time evolution of thionyl chloride (SOCl2) radiolysis products
- Measurement of gross alpha radioactivity levels and estimation of annual effective dose in hazelnut kernels
- Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy