Startseite Naturwissenschaften Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm

  • Haladhara Naik EMAIL logo , Ram Janam Singh , Srikant Pandurang Dange und Wooyoung Jang
Veröffentlicht/Copyright: 19. Juli 2024

Abstract

Independent isomeric yield ratios (IR) of 128,130,132Sb, 131,133Te, 132,134I, 135Xe and 138Cs in the epi-cadmium neutron-induced fission of 245Cm have been measured for the first time by using an off-line gamma-ray spectrometric technique. The average energy of the epi-cadmium neutron spectrum (<E n >) is 1.9 MeV. From the IR values, root mean square fragment angular momenta (J RMS) were deduced by using the spin dependent statistical model analysis. The IR and JRMS values of the fission products from the present work were compared with the literature data in the thermal neutron-induced fission of 245Cm to examine the role of excitation energy. Effect of nuclear structure on J RMS value was also examined.


Corresponding author: Haladhara Naik, Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India, E-mail:

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in Radiochimica Acta.


Acknowledgments

All persons who have made substantial contributions to the work reported in the manuscript (e.g., technical help, writing and editing assistance, general support), but who do not meet the criteria for authorship, are named in the Acknowledgements and have given us their permission to be named.

  1. Research ethics: The research ethics of Radiochima Acta have been followed by the authors in submitting the manuscript.

  2. Author contributions: Haladhara Naik – Conception, design, experiment, data aqusation, analysis and interpretaion of data and drafting of manuscript. Ram Janam Singh – Experiment and data aqusation, approval of manuscript. Srikant Pandurang Dange – Experiment and data aqusation, revising and approval of manuscript. Wooyoung Jang – Analysis and interpretation of data, approval of manuscript.

  3. Competing interests: The authors declare that we have no known competing interests or personal relationships that could have appeared to influence the work reported in the manuscript entitled “Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm”.

  4. Research funding: No funding is available.

  5. Data availability: Data are provided in table during submission of manuscript. No other data are available.

References

1. Huizenga, J. R.; Vandenbosch, R. Interpretation of Isomeric Cross-Section Ratios for (N, γ) and (γ, N) Reactions. Phys. Rev. 1960, 120, 1305; https://doi.org/10.1103/physrev.120.1305.Suche in Google Scholar

2. Haffner, W. L.; Huizenga, J. R.; Vandenbosch, R. Argonne National Laboratory Report ANL-6662, 1962. (unpublished).Suche in Google Scholar

3. Nix, J. R.; Swiatecki, W. J. Studies in the Liquid-Drop Theory of Nuclear Fission. Nucl. Phys. 1965, 71, 1; https://doi.org/10.1016/0029-5582(65)90038-6.Suche in Google Scholar

4. Rasmussen, J. O.; Norenberg, W.; Mang, H. J. A Model for Calculating the Angular Momentum Distribution of Fission Fragments. Nucl. Phys. 1969, A136, 465; https://doi.org/10.1016/0375-9474(69)90066-9.Suche in Google Scholar

5. Hoffman, M. M. Directional Correlation of Fission Fragments and Prompt Gamma Rays Associated with Thermal Neutron Fission. Phys. Rev. 1964, 133, B714; https://doi.org/10.1103/physrev.133.b714.Suche in Google Scholar

6. Strutinskii, V. M. Angular Anisotropy of Gamma Quanta that Accompany Fission. Sov. Phys. (JETP) 1960, 10, 613.Suche in Google Scholar

7. Wilhelmy, J. W.; Cheifetz, E.; Jared, R. C.; Thompson, S. G.; Bowman, H. R.; Rasmussen, J. R. Angular Momentum of Primary Products Formed in the Spontaneous Fission of 252Cf. Phys. Rev. 1972, C5, 2041.10.1103/PhysRevC.5.2041Suche in Google Scholar

8. Bocquet, J. P.; Schussler, F.; Monnand, E.; Sistemich, K. Effect of Fragment Kinetic Energy on the Supply of Isomeric States in 236U Fission. In Proceedings of the Fourth IAEA Symposium on Physics and Chemistry of Fission, Julich, 1979; IAEA: Vienna, Vol. II, 1980; p 179.Suche in Google Scholar

9. Denschlag, H. O.; Braun, H.; Faubel, W.; Fischbach, G.; Meixler, H.; Paffarth, G.; Porsch, W.; Weis, M.; Schrader, H.; Siegert, G.; Blachot, J.; Alfassi, Z. B.; Erten, H. N.; Izak-biran, T.; Tamai, T.; Wahl, A. C.; Wolfsberg, K. Distribution of Nuclear Charge and Angular Momentum in Charges 132–137, 99 and 102 of 235U(nth, F) at Various Kinetic Energies and Ionic Charge States of the Fragments. In Proceedings of the Fourth IAEA Symposium on Physics and Chemistry of Fission, Julich, 1979; IAEA: Vienna, Vol. II, 1980; p 153.Suche in Google Scholar

10. Sarantities, D. G.; Gordon, G. E.; Coryell, C. D. Ratios of Independent Yields of the Isomers Te131−131𝑚 and Te133−133𝑚 in Fission. Phys. Rev. 1965, 138, B353; https://doi.org/10.1103/physrev.138.b353.Suche in Google Scholar

11. Aumann, D. C.; Guckel, W.; Nirschi, E.; Zeising, H. Independent Isomeric Yield Ratio of 148Pm in Fission of the Moderately Excited 236U Compound Nucleus as a Measure of Fragment Angular Momentum. Phys. Rev. 1977, C16, 254.10.1103/PhysRevC.16.254Suche in Google Scholar

12. Imanishi, N.; Fujiwara, I.; Nishi, T. Independent Isomer Yields of Sb and Te Isotopes in Thermal-Neutron Fission of 233U, 235U and 239Pu. Nucl. Phys. 1976, A263, 141; https://doi.org/10.1016/0375-9474(76)90189-5.Suche in Google Scholar

13. Fujiwara, I.; Imanishi, N.; Nishi, T. Isomer-Yield Ratiosand Primary Angular Momenta of I, Xe an Cs Isotopes Produced in Thermal-Neutron Fission of 233U, 235U and 239Pu. J. Phys. Soc. Jpn. 1982, 51, 1713; https://doi.org/10.1143/jpsj.51.1713.Suche in Google Scholar

14. Datta, T.; Dange, S. P.; Nair, A. G. C.; Datta; Prakash, S.; Ramaniah, M. V. Fission Fragment Angular Momentum: Ratios of Independent Yields of Isomers of 95Nb and 132I in Thermal-Neutron-Induced Fission of 233U. Phys. Rev. 1982, C25, 358.Suche in Google Scholar

15. Ford, G. P.; Wolfsberg, K.; Erdal, B. R. Independent Yields of the Isomers of 133Xe and 135Xe for Neutron-Induced Fission of 233U, 235U, 238U, and 242Amm. Phys. Rev. C 1984, 30, 195.Suche in Google Scholar

16. Tomar, B. S.; Goswami, A.; Das, S. K.; Data, T.; Prakash, S.; Ramaniah, M. V. Fission Fragment Angular Momentum: Independent Isomeric Yield Ratio of 138Cs in Thermal Neutron Induced Fission of 233U, 239Pu and 241Pu. Radiochim. Acta 1985, 39, 1; https://doi.org/10.1524/ract.1985.39.1.1.Suche in Google Scholar

17. Dange, S. P.; Naik, H.; Datta, T.; Reddy, A. V. R.; Prakash, S.; Ramaniah, M. V. Dependence of the Angular Momenta of Fission Fragments on Their Nuclear Structure. Radiochim. Acta 1986, 39, 127; https://doi.org/10.1524/ract.1986.39.3.127.Suche in Google Scholar

18. Dange, S. P.; Naik, H.; Datta, T.; Guin, R.; Prakash, S.; Ramaniah, M. V. Effect of Shell Closure Proximity on Fragment Angular Momentum in 241Pu(nth, F). J. Radioanal. Nucl. Chem. Lett. 1986, 108, 269; https://doi.org/10.1007/bf02165185.Suche in Google Scholar

19. Tomar, B. S.; Goswami, A.; Das, S. K.; Datta, T.; Srivastava, B. K.; Nair, A. G. C.; Prakash, S.; Ramaniah, M. V. Fragment Angular Momenta in Low and Medium Energy Fission of 242Pu, Z. Phys. Atom. Nuclei 1987, A327, 225.10.1007/BF01292412Suche in Google Scholar

20. Naik, H.; Datta, T.; Dange, S. P.; Pujari, S. P.; Prakash, S.; Ramaniah, M. V. Correlations of Fission Fragment Angular Momentum with Collective and Intrinsic Degrees of Freedom. Z. Phys. Atoms and Nuclei 1988, A331, 335; https://doi.org/10.1007/bf01355605.Suche in Google Scholar

21. Tomar, B. S.; Goswami, A.; Reddy, A. V. R.; Das, S. K.; Manohar, S. B.; Prakash, S. Independent Isomeric Yield Ratios of 132Sb in 241Pu(nth, F) and 238U(α, F). Radiochim. Acta 1991, 55, 173; https://doi.org/10.1524/ract.1991.55.4.173.Suche in Google Scholar

22. Naik, H.; Dange, S. P.; Singh, R. J.; Datta, T. Systematics of Fragment Angular Momentum in Low-Energy Fission of Actinides. Nucl. Phys. 1995, A587, 273; https://doi.org/10.1016/0375-9474(94)00821-4.Suche in Google Scholar

23. Naik, H.; Dange, S. P.; Singh, R. J. Angular Momentum of Fission Fragments in Low Energy Fission of Actinides. Phys. Rev. C 2005, 71, 014304; https://doi.org/10.1103/physrevc.71.014304.Suche in Google Scholar

24. Naik, H.; Singh, R. J.; Iyer, R. H. Fission Fragment Angular Momentum in the Spontaneous Fission of 244Cm. Radiochim. Aca 2004, 92, 1; https://doi.org/10.1524/ract.92.1.1.25406.Suche in Google Scholar

25. Datta, T.; Dange, S. P.; Das, S. K.; Datta, Prakash, S.; Ramaniah, M. V. Influence of Fission Fragment Nuclear Structure on Scission Configuration in252Cf (S.F.). Z. Phys. Atom. Nuclei 1986, A324, 81; https://doi.org/10.1007/bf01290758.Suche in Google Scholar

26. Naik, H.; Dange, S. P.; Singh, R. J. Fission Fragment Angular Momentum in ODD-Z Fissioning Systems. Eur. Phys. J. 2000, A7, 377; https://doi.org/10.1007/s100500050405.Suche in Google Scholar

27. Naik, H.; Dange, S. P.; Singh, R. J.; Reddy, A. V. R. Single-particle Spin Effect on Fission Fragment Angular Momentum. Eur. Phys. J. 2007, A31, 195; https://doi.org/10.1140/epja/i2006-10171-0.Suche in Google Scholar

28. Naik, H.; Singh, R. J.; Dange, S. P.; Jang, W. Independent Isomeric Yield Ratios of Fission Products in the Epi-Cadmium Neutron Induced Fission of 241Pu. Radiochim. Acta 2023, 111, 793; https://doi.org/10.1515/ract-2023-0177.Suche in Google Scholar

29. Wilson, J. N.; Thisse, D.; Lebois, M.; Jovančević, N.; Gjestvang, D.; Canavan, R.; Rudigier, M.; Étasse, D.; Gerst, R. B.; Gaudefroy, L.; Adamska, E.; Adsley, P.; Algora, A.; Babo, M.; Belvedere, K.; Benito, J.; Benzoni, G.; Blazhev, A.; Boso, A.; Bottoni, S.; Bunce, M.; Chakma, R.; Cieplicka-Oryńczak, N.; Courtin, S.; Cortés, M. L.; Davies, P.; Delafosse, C.; Fallot, M.; Fornal, B.; Fraile, L.; Gottardo, A.; Guadilla, V.; Häfner, G.; Hauschild, K.; Heine, M.; Henrich, C.; Homm, I.; Ibrahim, F.; Iskra, Ł. W.; Ivanov, P.; Jazrawi, S.; Korgul, A.; Koseoglou, P.; Kröll, T.; Kurtukian-Nieto, T.; Le Meur, L.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I.; Miernik, K.; Nemer, J.; Oberstedt, S.; Paulsen, W.; Piersa, M.; Popovitch, Y.; Porzio, C.; Qi, L.; Ralet, D.; Regan, P. H.; Rezynkina, K.; Sánchez-Tembleque, V.; Siem, S.; Schmitt, C.; Söderström, P. A.; Sürder, C.; Tocabens, G.; Vedia, V.; Verney, D.; Warr, N.; Wasilewska, B.; Wiederhold, J.; Yavahchova, M.; Zeiser, F.; Ziliani, S. Angular Momentum Generation in Nuclear Fission. Nature 2021, 590, 566; https://doi.org/10.1038/s41586-021-03304-w.Suche in Google Scholar PubMed

30. Randrup, J.; Vogt, R. Generation of Fragment Angular Momentum in Fission. Phys. Rev. Lett. 2021, 127, 062502; https://doi.org/10.1103/physrevlett.127.062502.Suche in Google Scholar PubMed

31. Sears, C. J.; A.Mattera, A.; McCutchan, E. A.; Sonzogni, A. A.; Brown, D. A.; Potemkin, D. Compilation and Evaluation of Isomeric Fission Yield Ratios. Nucl. Data Sheets 2021, 173, 118–143. https://doi.org/10.1016/j.nds.2021.04.005.Suche in Google Scholar

32. IAEA-EXFOR Database Version of 2020-01-28. http://www-nds.iaea.org/exfor.Suche in Google Scholar

33. Otsuka, N.; Dupont, E.; Semkova, V.; Pritychenko, B.; Blokhin, A. I.; Aikawa, M.; Babykina, S.; Bossant, M.; Chen, G.; Dunaeva, S.; Forrest, R. A.; Fukahori, T.; Furutachi, N.; Ganesan, S.; Ge, Z.; Gritzay, O. O.; Herman, M.; Lalremruata, B.; Lee, Y. O.; Makinaga, A.; Matsumoto, K.; Mikhaylyukova, M.; Pikulina, G.; Pronyaev, V. G.; Saxena, A.; Schwerer, O.; Simakov, S. P.; Soppera, N.; Suzuki, R.; Tao, X.; Taova, S.; Varlamov, V. V.; Wang, J.; Yang, S. C.; Zerkin, V.; Zhuang, Y.; Yang, S.; Zhuang, Y. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets 2014, 120, 272. https://doi.org/10.1016/j.nds.2014.07.065.Suche in Google Scholar

34. Iyer, R. H.; Naik, H.; Pandey, A. K.; Kalsi, P. C.; Singh, R. J.; Ramaswami, A.; Nair, A. G. C. Measurement of Absolute Fission Yields in the Fast Neutron–Induced Fission of Actinides: 238U, 237Np, 238Pu, 240Pu, 243Am, and 244Cm by Track-Etch -Cum-Gamma Spectrometry. Nucl. Sci. Eng. 2000, 1335, 1–19; https://doi.org/10.13182/nse00-a2136.Suche in Google Scholar

35. NuDat 3.0, National Nuclear Data Center Brookhaven National Laboratory. https://www.nndc.bnl.gov/nudat/.Suche in Google Scholar

36. Browne, E.; Firestone, R. B.; Shirley, V. S., Eds. Table of Radioactive Isotopes; Wiley: New York, 1986.Suche in Google Scholar

37. Blachot, J.; Fiche, Ch. Tableau des isotopes radioactifs et des principaux rayonnements emis. Ann. Phys. 1981, 6, 3–218; https://doi.org/10.1051/anphys/198106060003s.Suche in Google Scholar

38. Naik, H.; Singh, R. J.; Jang, W.; Dange, S. P. Post-Neutron Mass Yield Distribution in the Epi-Cadmium Neutron Induced Fission of 245Cm. Nucl. Sci. Eng. 2023, 197, 1279. https://doi.org/10.1080/00295639.2022.2153577.Suche in Google Scholar

39. Al-Adilia, A.; Rakopoulos, V.; Solders, A. Extraction of Angular Momenta from Isomeric Yield Ratios. Eur. Phys. J. 2019, A 55, 61; https://doi.org/10.1140/epja/i2019-12731-5.Suche in Google Scholar

40. Stetcu, I.; Lovell, A. E.; Talou, P.; Kawano, T.; Marin, S.; Pozzi, S. A.; Bulgac, A. Angular Momentum Removal by Neutron and 𝛾-Ray Emissions during Fission Fragment Decays. Phys. Rev. Lett. 2021, 127, 222502; https://doi.org/10.1103/physrevlett.127.222502.Suche in Google Scholar

41. Dicknes, J. K.; Connell, J. W. Yields of Fission Products Produced by Thermal-Neutron Fission of 245Cm. Phys. Rev. C 1981, 23, 331; https://doi.org/10.1103/physrevc.23.331.Suche in Google Scholar

42. Wilkins, B. D.; Steinberg, E. P.; Chasman, R. R. Scission-point Model of Nuclear Fission Based on Deformed-Shell Effects. Phys. Rev. C 1976, 14, 1832; https://doi.org/10.1103/physrevc.14.1832.Suche in Google Scholar

43. Madsen, V. A.; Brown, H. R. Schematic Model for the Differences between Neutron and Proton Quadrupole Deformation Parameters in Open-Shell Nuclei. Phys. Rev. Lett. 1984, 52, 176; https://doi.org/10.1103/physrevlett.52.176.Suche in Google Scholar

44. Schultheis, S.; Schultheis, R. Empirical Limitations of Energy Dissipation in 252Cf(sf). Phys. Rev. C 1978, 18, 1317; https://doi.org/10.1103/physrevc.18.1317.Suche in Google Scholar

Received: 2024-02-27
Accepted: 2024-07-04
Published Online: 2024-07-19
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0287/html
Button zum nach oben scrollen