Abstract
This work synthesized MnO2 modified winter melon-derived biochar (MnO2@WBC) using potassium permanganate oxidation/hydrothermal method for uranium(VI) removal. The factors influencing uranium(VI) adsorption by MnO2@WBC, including pH, adsorbent dosage, time, temperature, and initial U(VI) concentration were explored. The material’s performance was characterized, and the underlying mechanism of U(VI) removal was analyzed using various techniques. The characterization results indicated that the MnO2@WBC exhibited excellent dispersibility, suggesting that MnO2 effectively prevented WBC aggregation and enhanced the reactive surface area, and providing more active sites that can effectively promote the complexation and adsorption of U(VI). The process suggested a dominant role for chemical adsorption. The Freundlich isotherm model demonstrated a high degree of alignment with the observed adsorption behavior, indicating a predominantly multilayer adsorption process. Thermodynamic studies indicated that adsorption was a spontaneous endothermic process. The XPS analysis demonstrated that the adsorption process was primarily due to the formation of stable complexes with C–O, Mn–O–H and C=O. The results demonstrated that MnO2@WBC effectively removed U(VI), achieving a maximum adsorption capacity of 240.86 mg g−1 at a pH of 5.0. These findings provided a theoretical basis for the treatment of wastewater contaminated with U(VI).
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 22366003
Funding source: Open Project Foundation of Stake key Laboratory of Nuclear Resources and Environment
Award Identifier / Grant number: 2022NRE30
Funding source: Jiangxi Provincial Natural Science Foundation
Award Identifier / Grant number: 20224BAB203005
Award Identifier / Grant number: 20232BAB213032
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was financially supported by the National Natural Science Foundation of China (22366003), Open Project Foundation of Stake key Laboratory of Nuclear Resources and Environment (2022NRE30), and Jiangxi Provincial Natural Science Foundation (20224BAB203005, 20232BAB213032).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Kuhlman, K.; Bartol, J.; Carter, A.; Lommerzheim, A.; Wolf, J. Scenario Development for Safety Assessment in Deep Geologic Disposal of High-Level Radioactive Waste and Spent Nuclear Fuel: A Review. Risk. Anal. 2024, 1–15; https://doi.org/10.1111/risa.14276.Search in Google Scholar PubMed
2. Ma, H.; Shen, M.; Tong, Y.; Wang, X. Radioactive Wastewater Treatment Technologies: A Review. Molecules 2023, 28, 1935–1959; https://doi.org/10.3390/molecules28041935.Search in Google Scholar PubMed PubMed Central
3. Schafmeister, M. High-level Radioactive Waste Repository: How Geology Combined with Societal Principles Can Lead to Public Acceptance-The German Experiment. Cr. Geosci. 2023, 355, 347–361; https://doi.org/10.5802/crgeos.178.Search in Google Scholar
4. Zhang, X.; Yang, X.; Rong, Q.; Liu, X.; Zhou, Y.; Yang, H.; Wang, G.; Chen, Z.; Wang, X. Enrichment and Separation of Radionuclides by Organic Polymer Materials: A Review. Acs. Est. Eng. 2024, 4, 250–268; https://doi.org/10.1021/acsestengg.3c00543.Search in Google Scholar
5. Fang, L.; Huang, T.; Lu, H.; Wu, X. L.; Chen, Z.; Yang, H.; Wang, S.; Tang, Z.; Li, Z.; Hu, B.; Wang, X. Biochar-based Materials in Environmental Pollutant Elimination, H2 Production and CO2 Capture Applications. Biochar 2023, 5, 1–24; https://doi.org/10.1007/s42773-023-00237-7.Search in Google Scholar
6. Kadadou, D.; Said, E.; Ajaj, R.; Hasan, S. W. Research Advances in Nuclear Wastewater Treatment Using Conventional and Hybrid Technologies: Towards Sustainable Wastewater Reuse and Recovery. J. Water. Process. Eng. 2023, 52, 103604; https://doi.org/10.1016/j.jwpe.2023.103604.Search in Google Scholar
7. El-Guebaly, L. Managing Fusion Radioactive Materials: Approaches and Challenges Facing Fusion in the 21st Century. Fusion Sci. Technol. 2023, 79, 919–931; https://doi.org/10.1080/15361055.2022.2151820.Search in Google Scholar
8. Takao, K. How Does Chemistry Contribute to Circular Economy in Nuclear Energy Systems to Make Them More Sustainable and Ecological? Dalton. T. 2023, 52, 9866–9881; https://doi.org/10.1039/d3dt01019h.Search in Google Scholar PubMed
9. Yang, G. Sorption and Reduction of Hexavalent Uranium by Natural and Modified Silicate Minerals: A Review. Environ. Chem. Lett. 2023, 21, 2441–2470; https://doi.org/10.1007/s10311-023-01606-1.Search in Google Scholar
10. Rani, L.; Srivastav, A.; Kaushal, J.; Shukla, D. P.; Pham, T. D.; van Hullebusch, E. D. Significance of MOF Adsorbents in Uranium Remediation from Water. Environ. Res. 2023, 236, 116795; https://doi.org/10.1016/j.envres.2023.116795.Search in Google Scholar PubMed
11. Jabbar, A.; Hussain, D.; Latif, K. H.; Albukhaty, S.; Jasim, A. K.; Sulaiman, G. M.; Abomughaid, M. M. Extremely Efficient Aerogels of Graphene Oxide/Graphene Oxide Nanoribbons/sodium Alginate for Uranium Removal from Wastewater Solution. Sci. Rep. Uk 2024, 14, 1285–1294; https://doi.org/10.1038/s41598-024-52043-1.Search in Google Scholar PubMed PubMed Central
12. Ji, D.; Hao, S.; Fan, X.; Liang, R. L.; Qiao, Z. Q.; Bai, Z. H.; Gao, Q. H.; Wu, H. J. A Strategy for the Preparation of Super-hydrophilic Molybdenum Disulfide Composites Applied to Remove Uranium from Wastewater. Dalton. T. 2024, 53, 5020–5033; https://doi.org/10.1039/d3dt03553k.Search in Google Scholar PubMed
13. Li, Z.; He, Y.; Sonne, C.; Lam, S. S.; Kirkham, M. B.; Bolan, N.; Rinklebe, J.; Chen, X.; Peng, W. A Strategy for Bioremediation of Nuclear Contaminants in the Environment. Environ. Pollut. 2023, 319, 120964; https://doi.org/10.1016/j.envpol.2022.120964.Search in Google Scholar PubMed
14. Chen, L.; Zhang, X.; Guangfa, H.; Zhao, J.; Liu, C. Solvent Induced Synthesis of Uranium Organic Frameworks: From 1D→2D Based on a Flexible Carboxylic Acid Ligand. Mater. Today Commun. 2022, 31, 103212; https://doi.org/10.1016/j.mtcomm.2022.103212.Search in Google Scholar
15. Jiang, T.; Zhang, X.; Xie, C.; Wu, X. Y.; Luo, C. W.; Li, M.; Peng, Y. Effective Capture of Aqueous Uranium Using a Novel Magnetic Goethite: Properties and Mechanism. J. Solid State Chem. 2021, 300, 122236; https://doi.org/10.1016/j.jssc.2021.122236.Search in Google Scholar
16. Ren, Q.; Xia, H.; Lv, J.; Wang, Y.; Yin, C.; Liu, Y.; Chen, Z.; Li, Y.; Wang, Y. Facile Synthesis of Robust Polyethyleneimine Incorporated Chitosan Composite Hydrogel for Efficient Enrichment of Uranium(VI) in Aqueous Solution. Colloid. Surface. A. 2024, 683, 133111; https://doi.org/10.1016/j.colsurfa.2023.133111.Search in Google Scholar
17. Xia, H.; Liu, Y.; Wang, Y.; Feng, Z.; Ren, Q.; Lv, J.; Li, Y.; Du, Y. Incorporation of Phytic Acid into Reed Straw-Derived Hydrochar for Highly Efficient and Selective Adsorption of Uranium(VI). Radiochim. Acta 2024, 112, 161–173; https://doi.org/10.1515/ract-2023-0250.Search in Google Scholar
18. Lv, J.; Xia, H.; Ren, Q.; Wang, Y.; Liu, Y.; Feng, Z.; Li, Y.; Du, Y.; Wang, Y. Hydrothermal Fabrication of Amino Functionalized Lotus Seedpods-Derived Biochar for Efficient Removal of Uranium (VI). J. Radioanal. Nucl. Ch. 2023, 332, 4075–4087; https://doi.org/10.1007/s10967-023-09094-x.Search in Google Scholar
19. Chen, X.; Wang, Y.; Xia, H.; Ren, Q.; Li, Y.; Xu, L.; Xie, C. One-can" Strategy for the Synthesis of Hydrothermal Biochar Modified with Phosphate Groups and Efficient Removal of Uranium(VI). J. Environ. Radioactiv. 2023, 263, 107182; https://doi.org/10.1016/j.jenvrad.2023.107182.Search in Google Scholar PubMed
20. Shuai, W.; Qin, Z.; Li, J.; Jia, Y.; Liang, Y.; Wang, Y. Uranium Photo-Precipitation Coupled with Fulvic Acid Oxidation under Anoxic and Oxic Conditions. Chem. Eng. J. 2023, 471, 144554; https://doi.org/10.1016/j.cej.2023.144554.Search in Google Scholar
21. Zhang, Y.; Huang, S.; Mei, B.; Jia, L.; Liao, J.; Zhu, W. Construction of Dopamine Supported Mg(Ca)Al Layered Double Hydroxides with Enhanced Adsorption Properties for Uranium. Sci. Total Environ. 2023, 881, 163525; https://doi.org/10.1016/j.scitotenv.2023.163525.Search in Google Scholar PubMed
22. Xing, C.; Bernicot, B.; Arrachart, G.; Pellet-Rostaing, S. Application of Ultra/nano Filtration Membrane in Uranium Rejection from Fresh and Salt Waters. Sep. Purif. Technol. 2023, 314, 123543; https://doi.org/10.1016/j.seppur.2023.123543.Search in Google Scholar
23. He, X.; Dugas, M.; Hodul, J.; Boudouris, B. W.; Phillip, W. A. Porous Block Polymer Composite Membranes for Uranium Uptake. Appl. Surf. Sci. 2024, 643, 158650; https://doi.org/10.1016/j.apsusc.2023.158650.Search in Google Scholar
24. Liu, X.; Li, Y.; Chen, Z.; Yang, H.; Wang, S.; Tang, Z.; Wang, X. Recent Progress of Covalent Organic Frameworks Membranes: Design, Synthesis, and Application in Water Treatment. Eeh 2023, 2, 117–130; https://doi.org/10.1016/j.eehl.2023.07.001.Search in Google Scholar PubMed PubMed Central
25. Liu, W.; Yang, Y.; Cheng, R.; Wu, X.; Chen, T.; Liu, Y.; Zhu, W. Facet-dependent Electrochemical Uranium Extraction in Seawater over Fe3O4 Catalysts. Sep. Purif. Technol. 2023, 319, 124054; https://doi.org/10.1016/j.seppur.2023.124054.Search in Google Scholar
26. Suneesh, A.; Manojkumar, P.; Selvan, B.; Ghosh, C.; Mythili, R.; Chandra, S.; Ramanathan, N. Unique Magnetic Graphene Oxide with Enhanced Carboxylate Functional Groups for Uranium Separation by Solid Phase Extraction. Mater. Sci. Eng. B-Adv. 2023, 295, 116609; https://doi.org/10.1016/j.mseb.2023.116609.Search in Google Scholar
27. Su, M.; Ou, T.; Li, J.; Tong, L.; Han, W.; Wu, Y.; Chen, D. Effectiveness and Mechanism of Nano Iron Oxides Modified Halloysite Nanotubes for Uranium Sequestration. J. Environ. Chem. Eng. 2023, 11, 109471; https://doi.org/10.1016/j.jece.2023.109471.Search in Google Scholar
28. Ou, M.; Li, W.; Huang, Z.; Xu, X. Highly Efficient Extraction of Uranium(VI) from Seawater by Polyamidoxime/Polyethyleneimine Sponge. Sep. Purif. Technol. 2024, 331, 125721; https://doi.org/10.1016/j.seppur.2023.125721.Search in Google Scholar
29. Chen, X.; Wang, P.; Yu, K.; Pan, J. Multi-Functional Microparticles Constructed by Steerable Phase Separation Process for Synchronous Uranium Selective Extraction and Heat Storage. Sep. Purif. Technol. 2024, 337, 126434; https://doi.org/10.1016/j.seppur.2024.126434.Search in Google Scholar
30. Pang, C.; Li, Y.; Wu, H.; Deng, Z.; Yuan, S.; Tan, W. Microbial Removal of Uranyl from Aqueous Solution by Leifsonia Sp in the Presence of Different Forms of Iron Oxides. J. Environ. Radioactiv. 2024, 272, 107367; https://doi.org/10.1016/j.jenvrad.2023.107367.Search in Google Scholar PubMed
31. Wang, Y.; Lin, Z.; Song, Y.; Wu, H.; Yu, J.; Zhu, J.; Liu, Q.; Chen, S.; Wang, J. Enhancing Uranium Adsorption Performance through the Introduction of a Electron Conjugation System on Amidoximated Phenyl Natural Bamboo Strips. Sep. Purif. Technol. 2024, 337, 126389; https://doi.org/10.1016/j.seppur.2024.126389.Search in Google Scholar
32. Qu, Z.; Wang, W.; He, Y. Prediction of Uranium Adsorption Capacity in Radioactive Wastewater Treatment with Biochar. Toxics 2024, 12, 118–132; https://doi.org/10.3390/toxics12020118.Search in Google Scholar PubMed PubMed Central
33. Yang, A.; Yang, P.; Huang, C. Preparation of Graphene Oxide-Chitosan Composite and Adsorption Performance for Uranium. J. Radioanal. Nucl. Ch. 2017, 313, 371–378; https://doi.org/10.1007/s10967-017-5329-4.Search in Google Scholar
34. Hu, B.; Ai, Y.; Jin, J.; Hayat, T.; Alsaedi, A.; Zhuang, L.; Wang, X. Efficient Elimination of Organic and Inorganic Pollutants by Biochar and Biochar-Based Materials. Biochar 2020, 2, 47–64; https://doi.org/10.1007/s42773-020-00044-4.Search in Google Scholar
35. Zhang, Y.; Mei, B.; Shen, B.; Jia, L.; Liao, J.; Zhu, W. Preparation of Biochar@chitosan-Polyethyleneimine for the Efficient Removal of Uranium from Water Environment. Carbohyd. Polym. 2023, 312, 120834; https://doi.org/10.1016/j.carbpol.2023.120834.Search in Google Scholar PubMed
36. Zhang, X.; Zhang, L.; Wang, Q.; Xin, Q.; Xiong, Y.; Wang, H. Selective, Rapid Extraction of Uranium from Aqueous Solution by Porous Chitosan-Phosphorylated Chitosan-Amidoxime Macroporous Resin Composite and Differential Charge Calculation. Int. J. Biol. Macromol. 2023, 253, 126661; https://doi.org/10.1016/j.ijbiomac.2023.126661.Search in Google Scholar PubMed
37. Sun, Y.; Yin, N.; Liu, C.; Ding, Y.; Yang, P. Preparation of an Amino-Modified Biochar Supported Sulfide Nanoscale Zero-Valent Iron Composite and its Efficient Removal of U(VI) from Wastewater by Adsorption and Reduction. New J. Chem. 2024, 48, 2855–2865; https://doi.org/10.1039/d3nj05479a.Search in Google Scholar
38. Wei, X.; Wang, X.; Bian, W.; Li, X.; Tian, Y.; Liu, L. Phosphate-functionalized Mesoporous Carbon for Efficient Extraction of Uranium (VI). J. Radioanal. Nucl. Ch. 2024, 333, 629–639; https://doi.org/10.1007/s10967-023-09318-0.Search in Google Scholar
39. Liao, J.; He, X.; Zhang, Y.; Zhang, L.; He, Z. The Construction of Magnetic Hydroxyapatite-Functionalized Pig Manure-Derived Biochar for the Efficient Uranium Separation. Chem. Eng. J. 2023, 457, 141367; https://doi.org/10.1016/j.cej.2023.141367.Search in Google Scholar
40. Wei, X.; Liu, Y.; Shen, L.; Lu, Z.; Ai, Y.; Wang, X. Machine Learning Insights in Predicting Heavy Metals Interaction with Biochar. Biochar 2024, 6, 1–11; https://doi.org/10.1007/s42773-024-00304-7.Search in Google Scholar
41. Liu, Z.; Wu, F.; Lv, T.; Qu, Y.; Zhang, Z.; Yu, C.; Zhao, C.; Xing, G. Ti3C2TX/carbon Aerogels Derived from Winter Melon for High-Efficiency Photothermal Conversion. Desalination 2024, 573, 117207; https://doi.org/10.1016/j.desal.2023.117207.Search in Google Scholar
42. Sun, X.; Baldwin, E.; Plotto, A.; Cameron, R.; Manthey, J.; Dorado, C.; Bai, J. The Effect of Cultivar and Processing Method on the Stability, Flavor, and Nutritional Properties of Winter Melon Juice. Lwt-Food. Sci. Technol. 2018, 97, 223–230; https://doi.org/10.1016/j.lwt.2018.06.059.Search in Google Scholar
43. Gallardo, M.; Fernández, M.; Giménez, C.; Padilla, F.; Thompson, R. Revised VegSyst Model to Calculate Dry Matter Production, Critical N Uptake and ETc of Several Vegetable Species Grown in Mediterranean Greenhouses. Agr. Syst. 2016, 146, 30–43; https://doi.org/10.1016/j.agsy.2016.03.014.Search in Google Scholar
44. Yin, N.; Ai, Y.; Xu, Y.; Ouyang, Y.; Yang, P. Preparation of Magnetic Biomass-Carbon Aerogel and its Application for Adsorption of Uranium(VI). J. Radioanal. Nucl. Ch. 2020, 326, 1307–1321; https://doi.org/10.1007/s10967-020-07392-2.Search in Google Scholar
45. Lin, J.; Du, Y.; Ma, X.; Li, Y.; Xie, H.; Qi, Y.; Zhang, S. Choline Chloride/Urea Etched Carbon Fiber to Improve the Elasticity of Biomass-Based Carbon Aerogel for Efficient Oil-Water Separation. Colloid. Surface. A. 2023, 669, 131506; https://doi.org/10.1016/j.colsurfa.2023.131506.Search in Google Scholar
46. Liu, Y.; Yuan, W.; Lin, W.; Yu, S.; Zhou, L.; Zeng, Q.; Wang, J.; Tao, L.; Dai, Q.; Liu, J. Efficacy and Mechanisms of δ-MnO2 Modified Biochar with Enhanced Porous Structure for Uranium(VI) Separation from Wastewater. Environ. Pollut. 2023, 335, 122262; https://doi.org/10.1016/j.envpol.2023.122262.Search in Google Scholar PubMed
47. Qiu, D.; Tian, Q.; Zhang, T.; Yang, D.; Qiu, F. Fabrication of Dynamic Zero-Valent iron/MnO2 Nanowire Membrane for Efficient and Recyclable Selenium Separation. Sep. Purif. Technol. 2020, 230, 115847; https://doi.org/10.1016/j.seppur.2019.115847.Search in Google Scholar
48. Druzian, D.; Muraro, P.; Oviedo, L.; da Costa, M. L.; Wouters, R. D.; Loureiro, S. N.; da Silva, W. L.; dos Santos, J. H. Z. Removal of Hg2+ Ions by Adsorption Using (TiO2@MnO2)-NPs Nanocomposite. J. Mater. Cycles. Waste. 2023, 25, 2691–2705; https://doi.org/10.1007/s10163-023-01743-3.Search in Google Scholar
49. Lu, X.; Liu, Z.; Wang, X.; Liu, Y.; Ma, H.; Cao, M.; Wang, W.; Yan, T. Construction of MnO2@ZIF-8 Core-Shell Nanocomposites for Efficient Removal of Sr2+ from Aqueous Solution. Colloid. Surface. A. 2024, 685, 133317; https://doi.org/10.1016/j.colsurfa.2024.133317.Search in Google Scholar
50. Wang, S.; Bai, Y.; Zhang, Z.; Xie, C.; Song, W.; Wang, C.; Ji, Z.; Wang, J. Simple Construction of the α-MnO2@ZIF-8 Nanomaterial with Highly Enhanced U(VI) Adsorption Performance and Assessed Removal Mechanism. Prog. Nat. Sci-mater. 2023, 33, 508–517; https://doi.org/10.1016/j.pnsc.2023.08.017.Search in Google Scholar
51. Wang, Z.; Yang, X.; Liang, T.; Yan, B. 3D Composite Carbon Foam-Loaded MnO2 and FeOOH Enabling the "Oxidation-Adsorption" Effect toward Efficient Removal of Arsenic from Groundwater. Chem. Eng. J. 2024, 479, 147620; https://doi.org/10.1016/j.cej.2023.147620.Search in Google Scholar
52. Liao, W.; Wang, H.; Li, F.; Zhao, C.; Liu, J.; Liao, J.; Yang, J.; Yang, Y.; Liu, N. MnO2-loaded Microorganism-Derived Carbon for U(VI) Adsorption from Aqueous Solution. Environ. Sci. Pollut. R. 2019, 26, 3697–3705; https://doi.org/10.1007/s11356-018-3887-9.Search in Google Scholar PubMed
53. Chen, X.; Wang, Y.; Lv, J.; Feng, Z.; Liu, Y.; Xia, H.; Li, Y.; Wang, C.; Zeng, K.; Liu, Y.; Yuan, D. Simple One-Pot Synthesis of Manganese Dioxide Modified Bamboo-Derived Biochar Composites for Uranium(VI) Removal. New J. Chem. 2022, 46, 14427–14438; https://doi.org/10.1039/d2nj02292c.Search in Google Scholar
54. Wang, B.; Zheng, J.; Li, Y.; Zaidi, A.; Hu, Y.; Hu, B. Fabrication of δ-MnO2-modified Algal Biochar for Efficient Removal of U(VI) from Aqueous Solutions. J. Environ. Chem. Eng. 2021, 9, 105625; https://doi.org/10.1016/j.jece.2021.105625.Search in Google Scholar
55. Du, Y.; Fu, X.; Zhou, Q. Preparation of Zero-Valent Iron-Nickle Bimetallic Composite for Se(IV) Adsorption from Aqueous Solution. J. Radioanal. Nucl. Ch. 2023, 386, 123944.10.1007/s10967-023-08789-5Search in Google Scholar
56. Ioannou, K.; Hadjiyiannis, P.; Liatsou, I. U.; Pashalidis, I. (VI) Adsorption by Biochar Fiber-MnO2 Composites. J. Radioanal. Nucl. Ch. 2019, 320, 425–432; https://doi.org/10.1007/s10967-019-06479-9.Search in Google Scholar
57. Dai, Y.; Peng, H.; Fan, J.; Qinqin, T.; Yuhui, L.; Youqun, W.; Zhibin, Z.; Xiaohong, C.; Yunhai, L. Removal of Uranium Using MnO2/orange Peel Biochar Composite Prepared by Activation and In-Situ Deposit in a Single Step. Biomass. Bioenerg. 2020, 142, 105772; https://doi.org/10.1016/j.biombioe.2020.105772.Search in Google Scholar
58. Zhu, J.; Liu, Q.; Li, Z.; Zhang, H.; Li, R.; Wang, J.; Emelchenko, G. A. Recovery of Uranium(VI) from Aqueous Solutions Using a Modified Honeycomb-like Porous Carbon Material. Dalton. T. 2017, 46, 420–429; https://doi.org/10.1039/c6dt03227c.Search in Google Scholar PubMed
59. Ahmed, W.; Núñez-delgado, A.; Mehmood, S.; Ali, S.; Qaswar, M.; Shakoor, A.; Chen, D. Y. Highly Efficient Uranium (VI) Capture from Aqueous Solution by Means of a Hydroxyapatite-Biochar Nanocomposite: Adsorption Behavior and Mechanism. Environ. Res. 2021, 201, 111518; https://doi.org/10.1016/j.envres.2021.111518.Search in Google Scholar PubMed
60. Sun, Y.; Yang, S.; Sheng, G.; Guo, Z.; Wang, X. The Removal of U(VI) from Aqueous Solution by Oxidized Multiwalled Carbon Nanotubes. J. Environ. Radioactiv. 2012, 105, 40–47; https://doi.org/10.1016/j.jenvrad.2011.10.009.Search in Google Scholar PubMed
61. Ye, T.; Huang, B.; Wang, Y.; Zhou, L.; Liu, Z. Rapid Removal of Uranium(VI) Using Functionalized luffa Rattan Biochar from Aqueous Solution. Colloid. Surface. A. 2020, 606, 125480; https://doi.org/10.1016/j.colsurfa.2020.125480.Search in Google Scholar
62. Ahmed, W.; Mehmood, S.; Qaswar, M.; Ali, S.; Khan, Z. H.; Ying, H.; Chen, D. Y.; Núñez-Delgado, A. Oxidized Biochar Obtained from Rice Straw as Adsorbent to Remove Uranium (VI) from Aqueous Solutions. J. Environ. Chem. Eng. 2021, 9, 105104; https://doi.org/10.1016/j.jece.2021.105104.Search in Google Scholar
63. Li, Y.; Li, X.; Wang, Z.; Zhang, F.; Wu, Q.; Sha, L. T.; Wang, Y.; Yan, Z. Y. Design and Synthesis of a Novel Bifunctional Polymer with Malonamide and Carboxyl Group for Highly Selective Separation of Uranium (VI). Sep. Purif. Technol. 2022, 302, 122115; https://doi.org/10.1016/j.seppur.2022.122115.Search in Google Scholar
64. Saleh, T.; Sarı, A.; Ullah, N.; Tuzen, M. Polyethylenimine Modified Activated Carbon as Novel Magnetic Adsorbent for the Removal of Uranium from Aqueous Solution. Chem. Eng. Res. Des. 2017, 117, 218–227; https://doi.org/10.1016/j.cherd.2016.10.030.Search in Google Scholar
65. Du, Y.; Zhou, Q.; Zhao, J.; Wu, H.; Li, X.; Liu, Y.; Le, Z. Fabrication of Pyrite-Zero Nickel Composites for Efficient Removal of Se(IV) from Aqueous Solution. Radiochim. Acta 2023, 111, 621–632; https://doi.org/10.1515/ract-2023-0143.Search in Google Scholar
66. Zhu, M.; Liu, L.; Feng, J.; Dong, H.; Zhang, C.; Ma, F.; Wang, Q. Efficient Uranium Adsorption by Amidoximized Porous Polyacrylonitrile with Hierarchical Pore Structure Prepared by Freeze-Extraction. J. Mol. Liq. 2021, 328, 115304; https://doi.org/10.1016/j.molliq.2021.115304.Search in Google Scholar
67. Chen, L.; Zhao, D.; Chen, S.; Wang, X.; Chen, C. One-step Fabrication of Amino Functionalized Magnetic Graphene Oxide Composite for Uranium(VI) Removal. J. Colloid. Interf. Sci. 2016, 472, 99–107; https://doi.org/10.1016/j.jcis.2016.03.044.Search in Google Scholar PubMed
68. Wang, J.; Ma, J.; Zhang, C.; Li, X.; Song, S.; Wen, T.; Fang, M.; Tan, X.; Wang, X. Fabrication of Core-Shell α-MnO2@polydopamine Nanocomposites for the Efficient and Ultra-fast Removal of U(VI) from Aqueous Solution. Dalton. T. 2019, 48, 971–981; https://doi.org/10.1039/c8dt04326d.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm
- Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution
- Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
- Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution
- Synthesis, in silico and biodistribution studies of a novel 47Sc-radiolabeled α-amino acid ester derivative attached to pyrazine and tetrazole rings for tumor targeted radiotherapy
- [113mIn]In-PSMA: high potential agent for SPECT imaging of prostate cancer
- Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles
- Identification and time evolution of thionyl chloride (SOCl2) radiolysis products
- Measurement of gross alpha radioactivity levels and estimation of annual effective dose in hazelnut kernels
- Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy
Articles in the same Issue
- Frontmatter
- Original Papers
- Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm
- Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution
- Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
- Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution
- Synthesis, in silico and biodistribution studies of a novel 47Sc-radiolabeled α-amino acid ester derivative attached to pyrazine and tetrazole rings for tumor targeted radiotherapy
- [113mIn]In-PSMA: high potential agent for SPECT imaging of prostate cancer
- Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles
- Identification and time evolution of thionyl chloride (SOCl2) radiolysis products
- Measurement of gross alpha radioactivity levels and estimation of annual effective dose in hazelnut kernels
- Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy