Home Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution
Article
Licensed
Unlicensed Requires Authentication

Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution

  • Qing Zhou , Yanjun Du EMAIL logo , Zihao Feng , Qi Ren , Yang Wang , Xiaoyong Chen , Yang Li and Yun Wang ORCID logo EMAIL logo
Published/Copyright: July 8, 2024

Abstract

This work synthesized MnO2 modified winter melon-derived biochar (MnO2@WBC) using potassium permanganate oxidation/hydrothermal method for uranium(VI) removal. The factors influencing uranium(VI) adsorption by MnO2@WBC, including pH, adsorbent dosage, time, temperature, and initial U(VI) concentration were explored. The material’s performance was characterized, and the underlying mechanism of U(VI) removal was analyzed using various techniques. The characterization results indicated that the MnO2@WBC exhibited excellent dispersibility, suggesting that MnO2 effectively prevented WBC aggregation and enhanced the reactive surface area, and providing more active sites that can effectively promote the complexation and adsorption of U(VI). The process suggested a dominant role for chemical adsorption. The Freundlich isotherm model demonstrated a high degree of alignment with the observed adsorption behavior, indicating a predominantly multilayer adsorption process. Thermodynamic studies indicated that adsorption was a spontaneous endothermic process. The XPS analysis demonstrated that the adsorption process was primarily due to the formation of stable complexes with C–O, Mn–O–H and C=O. The results demonstrated that MnO2@WBC effectively removed U(VI), achieving a maximum adsorption capacity of 240.86 mg g−1 at a pH of 5.0. These findings provided a theoretical basis for the treatment of wastewater contaminated with U(VI).


Corresponding authors: Yanjun Du and Yun Wang, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China, E-mail: (Y. Du), (Y. Wang)

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 22366003

Funding source: Open Project Foundation of Stake key Laboratory of Nuclear Resources and Environment

Award Identifier / Grant number: 2022NRE30

Funding source: Jiangxi Provincial Natural Science Foundation

Award Identifier / Grant number: 20224BAB203005

Award Identifier / Grant number: 20232BAB213032

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was financially supported by the National Natural Science Foundation of China (22366003), Open Project Foundation of Stake key Laboratory of Nuclear Resources and Environment (2022NRE30), and Jiangxi Provincial Natural Science Foundation (20224BAB203005, 20232BAB213032).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Kuhlman, K.; Bartol, J.; Carter, A.; Lommerzheim, A.; Wolf, J. Scenario Development for Safety Assessment in Deep Geologic Disposal of High-Level Radioactive Waste and Spent Nuclear Fuel: A Review. Risk. Anal. 2024, 1–15; https://doi.org/10.1111/risa.14276.Search in Google Scholar PubMed

2. Ma, H.; Shen, M.; Tong, Y.; Wang, X. Radioactive Wastewater Treatment Technologies: A Review. Molecules 2023, 28, 1935–1959; https://doi.org/10.3390/molecules28041935.Search in Google Scholar PubMed PubMed Central

3. Schafmeister, M. High-level Radioactive Waste Repository: How Geology Combined with Societal Principles Can Lead to Public Acceptance-The German Experiment. Cr. Geosci. 2023, 355, 347–361; https://doi.org/10.5802/crgeos.178.Search in Google Scholar

4. Zhang, X.; Yang, X.; Rong, Q.; Liu, X.; Zhou, Y.; Yang, H.; Wang, G.; Chen, Z.; Wang, X. Enrichment and Separation of Radionuclides by Organic Polymer Materials: A Review. Acs. Est. Eng. 2024, 4, 250–268; https://doi.org/10.1021/acsestengg.3c00543.Search in Google Scholar

5. Fang, L.; Huang, T.; Lu, H.; Wu, X. L.; Chen, Z.; Yang, H.; Wang, S.; Tang, Z.; Li, Z.; Hu, B.; Wang, X. Biochar-based Materials in Environmental Pollutant Elimination, H2 Production and CO2 Capture Applications. Biochar 2023, 5, 1–24; https://doi.org/10.1007/s42773-023-00237-7.Search in Google Scholar

6. Kadadou, D.; Said, E.; Ajaj, R.; Hasan, S. W. Research Advances in Nuclear Wastewater Treatment Using Conventional and Hybrid Technologies: Towards Sustainable Wastewater Reuse and Recovery. J. Water. Process. Eng. 2023, 52, 103604; https://doi.org/10.1016/j.jwpe.2023.103604.Search in Google Scholar

7. El-Guebaly, L. Managing Fusion Radioactive Materials: Approaches and Challenges Facing Fusion in the 21st Century. Fusion Sci. Technol. 2023, 79, 919–931; https://doi.org/10.1080/15361055.2022.2151820.Search in Google Scholar

8. Takao, K. How Does Chemistry Contribute to Circular Economy in Nuclear Energy Systems to Make Them More Sustainable and Ecological? Dalton. T. 2023, 52, 9866–9881; https://doi.org/10.1039/d3dt01019h.Search in Google Scholar PubMed

9. Yang, G. Sorption and Reduction of Hexavalent Uranium by Natural and Modified Silicate Minerals: A Review. Environ. Chem. Lett. 2023, 21, 2441–2470; https://doi.org/10.1007/s10311-023-01606-1.Search in Google Scholar

10. Rani, L.; Srivastav, A.; Kaushal, J.; Shukla, D. P.; Pham, T. D.; van Hullebusch, E. D. Significance of MOF Adsorbents in Uranium Remediation from Water. Environ. Res. 2023, 236, 116795; https://doi.org/10.1016/j.envres.2023.116795.Search in Google Scholar PubMed

11. Jabbar, A.; Hussain, D.; Latif, K. H.; Albukhaty, S.; Jasim, A. K.; Sulaiman, G. M.; Abomughaid, M. M. Extremely Efficient Aerogels of Graphene Oxide/Graphene Oxide Nanoribbons/sodium Alginate for Uranium Removal from Wastewater Solution. Sci. Rep. Uk 2024, 14, 1285–1294; https://doi.org/10.1038/s41598-024-52043-1.Search in Google Scholar PubMed PubMed Central

12. Ji, D.; Hao, S.; Fan, X.; Liang, R. L.; Qiao, Z. Q.; Bai, Z. H.; Gao, Q. H.; Wu, H. J. A Strategy for the Preparation of Super-hydrophilic Molybdenum Disulfide Composites Applied to Remove Uranium from Wastewater. Dalton. T. 2024, 53, 5020–5033; https://doi.org/10.1039/d3dt03553k.Search in Google Scholar PubMed

13. Li, Z.; He, Y.; Sonne, C.; Lam, S. S.; Kirkham, M. B.; Bolan, N.; Rinklebe, J.; Chen, X.; Peng, W. A Strategy for Bioremediation of Nuclear Contaminants in the Environment. Environ. Pollut. 2023, 319, 120964; https://doi.org/10.1016/j.envpol.2022.120964.Search in Google Scholar PubMed

14. Chen, L.; Zhang, X.; Guangfa, H.; Zhao, J.; Liu, C. Solvent Induced Synthesis of Uranium Organic Frameworks: From 1D→2D Based on a Flexible Carboxylic Acid Ligand. Mater. Today Commun. 2022, 31, 103212; https://doi.org/10.1016/j.mtcomm.2022.103212.Search in Google Scholar

15. Jiang, T.; Zhang, X.; Xie, C.; Wu, X. Y.; Luo, C. W.; Li, M.; Peng, Y. Effective Capture of Aqueous Uranium Using a Novel Magnetic Goethite: Properties and Mechanism. J. Solid State Chem. 2021, 300, 122236; https://doi.org/10.1016/j.jssc.2021.122236.Search in Google Scholar

16. Ren, Q.; Xia, H.; Lv, J.; Wang, Y.; Yin, C.; Liu, Y.; Chen, Z.; Li, Y.; Wang, Y. Facile Synthesis of Robust Polyethyleneimine Incorporated Chitosan Composite Hydrogel for Efficient Enrichment of Uranium(VI) in Aqueous Solution. Colloid. Surface. A. 2024, 683, 133111; https://doi.org/10.1016/j.colsurfa.2023.133111.Search in Google Scholar

17. Xia, H.; Liu, Y.; Wang, Y.; Feng, Z.; Ren, Q.; Lv, J.; Li, Y.; Du, Y. Incorporation of Phytic Acid into Reed Straw-Derived Hydrochar for Highly Efficient and Selective Adsorption of Uranium(VI). Radiochim. Acta 2024, 112, 161–173; https://doi.org/10.1515/ract-2023-0250.Search in Google Scholar

18. Lv, J.; Xia, H.; Ren, Q.; Wang, Y.; Liu, Y.; Feng, Z.; Li, Y.; Du, Y.; Wang, Y. Hydrothermal Fabrication of Amino Functionalized Lotus Seedpods-Derived Biochar for Efficient Removal of Uranium (VI). J. Radioanal. Nucl. Ch. 2023, 332, 4075–4087; https://doi.org/10.1007/s10967-023-09094-x.Search in Google Scholar

19. Chen, X.; Wang, Y.; Xia, H.; Ren, Q.; Li, Y.; Xu, L.; Xie, C. One-can" Strategy for the Synthesis of Hydrothermal Biochar Modified with Phosphate Groups and Efficient Removal of Uranium(VI). J. Environ. Radioactiv. 2023, 263, 107182; https://doi.org/10.1016/j.jenvrad.2023.107182.Search in Google Scholar PubMed

20. Shuai, W.; Qin, Z.; Li, J.; Jia, Y.; Liang, Y.; Wang, Y. Uranium Photo-Precipitation Coupled with Fulvic Acid Oxidation under Anoxic and Oxic Conditions. Chem. Eng. J. 2023, 471, 144554; https://doi.org/10.1016/j.cej.2023.144554.Search in Google Scholar

21. Zhang, Y.; Huang, S.; Mei, B.; Jia, L.; Liao, J.; Zhu, W. Construction of Dopamine Supported Mg(Ca)Al Layered Double Hydroxides with Enhanced Adsorption Properties for Uranium. Sci. Total Environ. 2023, 881, 163525; https://doi.org/10.1016/j.scitotenv.2023.163525.Search in Google Scholar PubMed

22. Xing, C.; Bernicot, B.; Arrachart, G.; Pellet-Rostaing, S. Application of Ultra/nano Filtration Membrane in Uranium Rejection from Fresh and Salt Waters. Sep. Purif. Technol. 2023, 314, 123543; https://doi.org/10.1016/j.seppur.2023.123543.Search in Google Scholar

23. He, X.; Dugas, M.; Hodul, J.; Boudouris, B. W.; Phillip, W. A. Porous Block Polymer Composite Membranes for Uranium Uptake. Appl. Surf. Sci. 2024, 643, 158650; https://doi.org/10.1016/j.apsusc.2023.158650.Search in Google Scholar

24. Liu, X.; Li, Y.; Chen, Z.; Yang, H.; Wang, S.; Tang, Z.; Wang, X. Recent Progress of Covalent Organic Frameworks Membranes: Design, Synthesis, and Application in Water Treatment. Eeh 2023, 2, 117–130; https://doi.org/10.1016/j.eehl.2023.07.001.Search in Google Scholar PubMed PubMed Central

25. Liu, W.; Yang, Y.; Cheng, R.; Wu, X.; Chen, T.; Liu, Y.; Zhu, W. Facet-dependent Electrochemical Uranium Extraction in Seawater over Fe3O4 Catalysts. Sep. Purif. Technol. 2023, 319, 124054; https://doi.org/10.1016/j.seppur.2023.124054.Search in Google Scholar

26. Suneesh, A.; Manojkumar, P.; Selvan, B.; Ghosh, C.; Mythili, R.; Chandra, S.; Ramanathan, N. Unique Magnetic Graphene Oxide with Enhanced Carboxylate Functional Groups for Uranium Separation by Solid Phase Extraction. Mater. Sci. Eng. B-Adv. 2023, 295, 116609; https://doi.org/10.1016/j.mseb.2023.116609.Search in Google Scholar

27. Su, M.; Ou, T.; Li, J.; Tong, L.; Han, W.; Wu, Y.; Chen, D. Effectiveness and Mechanism of Nano Iron Oxides Modified Halloysite Nanotubes for Uranium Sequestration. J. Environ. Chem. Eng. 2023, 11, 109471; https://doi.org/10.1016/j.jece.2023.109471.Search in Google Scholar

28. Ou, M.; Li, W.; Huang, Z.; Xu, X. Highly Efficient Extraction of Uranium(VI) from Seawater by Polyamidoxime/Polyethyleneimine Sponge. Sep. Purif. Technol. 2024, 331, 125721; https://doi.org/10.1016/j.seppur.2023.125721.Search in Google Scholar

29. Chen, X.; Wang, P.; Yu, K.; Pan, J. Multi-Functional Microparticles Constructed by Steerable Phase Separation Process for Synchronous Uranium Selective Extraction and Heat Storage. Sep. Purif. Technol. 2024, 337, 126434; https://doi.org/10.1016/j.seppur.2024.126434.Search in Google Scholar

30. Pang, C.; Li, Y.; Wu, H.; Deng, Z.; Yuan, S.; Tan, W. Microbial Removal of Uranyl from Aqueous Solution by Leifsonia Sp in the Presence of Different Forms of Iron Oxides. J. Environ. Radioactiv. 2024, 272, 107367; https://doi.org/10.1016/j.jenvrad.2023.107367.Search in Google Scholar PubMed

31. Wang, Y.; Lin, Z.; Song, Y.; Wu, H.; Yu, J.; Zhu, J.; Liu, Q.; Chen, S.; Wang, J. Enhancing Uranium Adsorption Performance through the Introduction of a Electron Conjugation System on Amidoximated Phenyl Natural Bamboo Strips. Sep. Purif. Technol. 2024, 337, 126389; https://doi.org/10.1016/j.seppur.2024.126389.Search in Google Scholar

32. Qu, Z.; Wang, W.; He, Y. Prediction of Uranium Adsorption Capacity in Radioactive Wastewater Treatment with Biochar. Toxics 2024, 12, 118–132; https://doi.org/10.3390/toxics12020118.Search in Google Scholar PubMed PubMed Central

33. Yang, A.; Yang, P.; Huang, C. Preparation of Graphene Oxide-Chitosan Composite and Adsorption Performance for Uranium. J. Radioanal. Nucl. Ch. 2017, 313, 371–378; https://doi.org/10.1007/s10967-017-5329-4.Search in Google Scholar

34. Hu, B.; Ai, Y.; Jin, J.; Hayat, T.; Alsaedi, A.; Zhuang, L.; Wang, X. Efficient Elimination of Organic and Inorganic Pollutants by Biochar and Biochar-Based Materials. Biochar 2020, 2, 47–64; https://doi.org/10.1007/s42773-020-00044-4.Search in Google Scholar

35. Zhang, Y.; Mei, B.; Shen, B.; Jia, L.; Liao, J.; Zhu, W. Preparation of Biochar@chitosan-Polyethyleneimine for the Efficient Removal of Uranium from Water Environment. Carbohyd. Polym. 2023, 312, 120834; https://doi.org/10.1016/j.carbpol.2023.120834.Search in Google Scholar PubMed

36. Zhang, X.; Zhang, L.; Wang, Q.; Xin, Q.; Xiong, Y.; Wang, H. Selective, Rapid Extraction of Uranium from Aqueous Solution by Porous Chitosan-Phosphorylated Chitosan-Amidoxime Macroporous Resin Composite and Differential Charge Calculation. Int. J. Biol. Macromol. 2023, 253, 126661; https://doi.org/10.1016/j.ijbiomac.2023.126661.Search in Google Scholar PubMed

37. Sun, Y.; Yin, N.; Liu, C.; Ding, Y.; Yang, P. Preparation of an Amino-Modified Biochar Supported Sulfide Nanoscale Zero-Valent Iron Composite and its Efficient Removal of U(VI) from Wastewater by Adsorption and Reduction. New J. Chem. 2024, 48, 2855–2865; https://doi.org/10.1039/d3nj05479a.Search in Google Scholar

38. Wei, X.; Wang, X.; Bian, W.; Li, X.; Tian, Y.; Liu, L. Phosphate-functionalized Mesoporous Carbon for Efficient Extraction of Uranium (VI). J. Radioanal. Nucl. Ch. 2024, 333, 629–639; https://doi.org/10.1007/s10967-023-09318-0.Search in Google Scholar

39. Liao, J.; He, X.; Zhang, Y.; Zhang, L.; He, Z. The Construction of Magnetic Hydroxyapatite-Functionalized Pig Manure-Derived Biochar for the Efficient Uranium Separation. Chem. Eng. J. 2023, 457, 141367; https://doi.org/10.1016/j.cej.2023.141367.Search in Google Scholar

40. Wei, X.; Liu, Y.; Shen, L.; Lu, Z.; Ai, Y.; Wang, X. Machine Learning Insights in Predicting Heavy Metals Interaction with Biochar. Biochar 2024, 6, 1–11; https://doi.org/10.1007/s42773-024-00304-7.Search in Google Scholar

41. Liu, Z.; Wu, F.; Lv, T.; Qu, Y.; Zhang, Z.; Yu, C.; Zhao, C.; Xing, G. Ti3C2TX/carbon Aerogels Derived from Winter Melon for High-Efficiency Photothermal Conversion. Desalination 2024, 573, 117207; https://doi.org/10.1016/j.desal.2023.117207.Search in Google Scholar

42. Sun, X.; Baldwin, E.; Plotto, A.; Cameron, R.; Manthey, J.; Dorado, C.; Bai, J. The Effect of Cultivar and Processing Method on the Stability, Flavor, and Nutritional Properties of Winter Melon Juice. Lwt-Food. Sci. Technol. 2018, 97, 223–230; https://doi.org/10.1016/j.lwt.2018.06.059.Search in Google Scholar

43. Gallardo, M.; Fernández, M.; Giménez, C.; Padilla, F.; Thompson, R. Revised VegSyst Model to Calculate Dry Matter Production, Critical N Uptake and ETc of Several Vegetable Species Grown in Mediterranean Greenhouses. Agr. Syst. 2016, 146, 30–43; https://doi.org/10.1016/j.agsy.2016.03.014.Search in Google Scholar

44. Yin, N.; Ai, Y.; Xu, Y.; Ouyang, Y.; Yang, P. Preparation of Magnetic Biomass-Carbon Aerogel and its Application for Adsorption of Uranium(VI). J. Radioanal. Nucl. Ch. 2020, 326, 1307–1321; https://doi.org/10.1007/s10967-020-07392-2.Search in Google Scholar

45. Lin, J.; Du, Y.; Ma, X.; Li, Y.; Xie, H.; Qi, Y.; Zhang, S. Choline Chloride/Urea Etched Carbon Fiber to Improve the Elasticity of Biomass-Based Carbon Aerogel for Efficient Oil-Water Separation. Colloid. Surface. A. 2023, 669, 131506; https://doi.org/10.1016/j.colsurfa.2023.131506.Search in Google Scholar

46. Liu, Y.; Yuan, W.; Lin, W.; Yu, S.; Zhou, L.; Zeng, Q.; Wang, J.; Tao, L.; Dai, Q.; Liu, J. Efficacy and Mechanisms of δ-MnO2 Modified Biochar with Enhanced Porous Structure for Uranium(VI) Separation from Wastewater. Environ. Pollut. 2023, 335, 122262; https://doi.org/10.1016/j.envpol.2023.122262.Search in Google Scholar PubMed

47. Qiu, D.; Tian, Q.; Zhang, T.; Yang, D.; Qiu, F. Fabrication of Dynamic Zero-Valent iron/MnO2 Nanowire Membrane for Efficient and Recyclable Selenium Separation. Sep. Purif. Technol. 2020, 230, 115847; https://doi.org/10.1016/j.seppur.2019.115847.Search in Google Scholar

48. Druzian, D.; Muraro, P.; Oviedo, L.; da Costa, M. L.; Wouters, R. D.; Loureiro, S. N.; da Silva, W. L.; dos Santos, J. H. Z. Removal of Hg2+ Ions by Adsorption Using (TiO2@MnO2)-NPs Nanocomposite. J. Mater. Cycles. Waste. 2023, 25, 2691–2705; https://doi.org/10.1007/s10163-023-01743-3.Search in Google Scholar

49. Lu, X.; Liu, Z.; Wang, X.; Liu, Y.; Ma, H.; Cao, M.; Wang, W.; Yan, T. Construction of MnO2@ZIF-8 Core-Shell Nanocomposites for Efficient Removal of Sr2+ from Aqueous Solution. Colloid. Surface. A. 2024, 685, 133317; https://doi.org/10.1016/j.colsurfa.2024.133317.Search in Google Scholar

50. Wang, S.; Bai, Y.; Zhang, Z.; Xie, C.; Song, W.; Wang, C.; Ji, Z.; Wang, J. Simple Construction of the α-MnO2@ZIF-8 Nanomaterial with Highly Enhanced U(VI) Adsorption Performance and Assessed Removal Mechanism. Prog. Nat. Sci-mater. 2023, 33, 508–517; https://doi.org/10.1016/j.pnsc.2023.08.017.Search in Google Scholar

51. Wang, Z.; Yang, X.; Liang, T.; Yan, B. 3D Composite Carbon Foam-Loaded MnO2 and FeOOH Enabling the "Oxidation-Adsorption" Effect toward Efficient Removal of Arsenic from Groundwater. Chem. Eng. J. 2024, 479, 147620; https://doi.org/10.1016/j.cej.2023.147620.Search in Google Scholar

52. Liao, W.; Wang, H.; Li, F.; Zhao, C.; Liu, J.; Liao, J.; Yang, J.; Yang, Y.; Liu, N. MnO2-loaded Microorganism-Derived Carbon for U(VI) Adsorption from Aqueous Solution. Environ. Sci. Pollut. R. 2019, 26, 3697–3705; https://doi.org/10.1007/s11356-018-3887-9.Search in Google Scholar PubMed

53. Chen, X.; Wang, Y.; Lv, J.; Feng, Z.; Liu, Y.; Xia, H.; Li, Y.; Wang, C.; Zeng, K.; Liu, Y.; Yuan, D. Simple One-Pot Synthesis of Manganese Dioxide Modified Bamboo-Derived Biochar Composites for Uranium(VI) Removal. New J. Chem. 2022, 46, 14427–14438; https://doi.org/10.1039/d2nj02292c.Search in Google Scholar

54. Wang, B.; Zheng, J.; Li, Y.; Zaidi, A.; Hu, Y.; Hu, B. Fabrication of δ-MnO2-modified Algal Biochar for Efficient Removal of U(VI) from Aqueous Solutions. J. Environ. Chem. Eng. 2021, 9, 105625; https://doi.org/10.1016/j.jece.2021.105625.Search in Google Scholar

55. Du, Y.; Fu, X.; Zhou, Q. Preparation of Zero-Valent Iron-Nickle Bimetallic Composite for Se(IV) Adsorption from Aqueous Solution. J. Radioanal. Nucl. Ch. 2023, 386, 123944.10.1007/s10967-023-08789-5Search in Google Scholar

56. Ioannou, K.; Hadjiyiannis, P.; Liatsou, I. U.; Pashalidis, I. (VI) Adsorption by Biochar Fiber-MnO2 Composites. J. Radioanal. Nucl. Ch. 2019, 320, 425–432; https://doi.org/10.1007/s10967-019-06479-9.Search in Google Scholar

57. Dai, Y.; Peng, H.; Fan, J.; Qinqin, T.; Yuhui, L.; Youqun, W.; Zhibin, Z.; Xiaohong, C.; Yunhai, L. Removal of Uranium Using MnO2/orange Peel Biochar Composite Prepared by Activation and In-Situ Deposit in a Single Step. Biomass. Bioenerg. 2020, 142, 105772; https://doi.org/10.1016/j.biombioe.2020.105772.Search in Google Scholar

58. Zhu, J.; Liu, Q.; Li, Z.; Zhang, H.; Li, R.; Wang, J.; Emelchenko, G. A. Recovery of Uranium(VI) from Aqueous Solutions Using a Modified Honeycomb-like Porous Carbon Material. Dalton. T. 2017, 46, 420–429; https://doi.org/10.1039/c6dt03227c.Search in Google Scholar PubMed

59. Ahmed, W.; Núñez-delgado, A.; Mehmood, S.; Ali, S.; Qaswar, M.; Shakoor, A.; Chen, D. Y. Highly Efficient Uranium (VI) Capture from Aqueous Solution by Means of a Hydroxyapatite-Biochar Nanocomposite: Adsorption Behavior and Mechanism. Environ. Res. 2021, 201, 111518; https://doi.org/10.1016/j.envres.2021.111518.Search in Google Scholar PubMed

60. Sun, Y.; Yang, S.; Sheng, G.; Guo, Z.; Wang, X. The Removal of U(VI) from Aqueous Solution by Oxidized Multiwalled Carbon Nanotubes. J. Environ. Radioactiv. 2012, 105, 40–47; https://doi.org/10.1016/j.jenvrad.2011.10.009.Search in Google Scholar PubMed

61. Ye, T.; Huang, B.; Wang, Y.; Zhou, L.; Liu, Z. Rapid Removal of Uranium(VI) Using Functionalized luffa Rattan Biochar from Aqueous Solution. Colloid. Surface. A. 2020, 606, 125480; https://doi.org/10.1016/j.colsurfa.2020.125480.Search in Google Scholar

62. Ahmed, W.; Mehmood, S.; Qaswar, M.; Ali, S.; Khan, Z. H.; Ying, H.; Chen, D. Y.; Núñez-Delgado, A. Oxidized Biochar Obtained from Rice Straw as Adsorbent to Remove Uranium (VI) from Aqueous Solutions. J. Environ. Chem. Eng. 2021, 9, 105104; https://doi.org/10.1016/j.jece.2021.105104.Search in Google Scholar

63. Li, Y.; Li, X.; Wang, Z.; Zhang, F.; Wu, Q.; Sha, L. T.; Wang, Y.; Yan, Z. Y. Design and Synthesis of a Novel Bifunctional Polymer with Malonamide and Carboxyl Group for Highly Selective Separation of Uranium (VI). Sep. Purif. Technol. 2022, 302, 122115; https://doi.org/10.1016/j.seppur.2022.122115.Search in Google Scholar

64. Saleh, T.; Sarı, A.; Ullah, N.; Tuzen, M. Polyethylenimine Modified Activated Carbon as Novel Magnetic Adsorbent for the Removal of Uranium from Aqueous Solution. Chem. Eng. Res. Des. 2017, 117, 218–227; https://doi.org/10.1016/j.cherd.2016.10.030.Search in Google Scholar

65. Du, Y.; Zhou, Q.; Zhao, J.; Wu, H.; Li, X.; Liu, Y.; Le, Z. Fabrication of Pyrite-Zero Nickel Composites for Efficient Removal of Se(IV) from Aqueous Solution. Radiochim. Acta 2023, 111, 621–632; https://doi.org/10.1515/ract-2023-0143.Search in Google Scholar

66. Zhu, M.; Liu, L.; Feng, J.; Dong, H.; Zhang, C.; Ma, F.; Wang, Q. Efficient Uranium Adsorption by Amidoximized Porous Polyacrylonitrile with Hierarchical Pore Structure Prepared by Freeze-Extraction. J. Mol. Liq. 2021, 328, 115304; https://doi.org/10.1016/j.molliq.2021.115304.Search in Google Scholar

67. Chen, L.; Zhao, D.; Chen, S.; Wang, X.; Chen, C. One-step Fabrication of Amino Functionalized Magnetic Graphene Oxide Composite for Uranium(VI) Removal. J. Colloid. Interf. Sci. 2016, 472, 99–107; https://doi.org/10.1016/j.jcis.2016.03.044.Search in Google Scholar PubMed

68. Wang, J.; Ma, J.; Zhang, C.; Li, X.; Song, S.; Wen, T.; Fang, M.; Tan, X.; Wang, X. Fabrication of Core-Shell α-MnO2@polydopamine Nanocomposites for the Efficient and Ultra-fast Removal of U(VI) from Aqueous Solution. Dalton. T. 2019, 48, 971–981; https://doi.org/10.1039/c8dt04326d.Search in Google Scholar PubMed

Received: 2024-04-28
Accepted: 2024-06-24
Published Online: 2024-07-08
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0301/html
Scroll to top button