Abstract
The prevalence rate of prostate cancer is very high and unfortunately causes many deaths worldwide. This study aimed to prepare [113mIn]In-PSMA as a novel agent for single photon emission computed tomography (SPECT) imaging of prostate cancer. 113mIn was eluted from an in-house made 113Sn/113mIn generator in chloride form, and its radionuclide, chemical and radiochemical purities was studied. [113mIn]In-PSMA was prepared with radiochemical purity (RCP) > 99 % under optimal labeling conditions. The biodistribution of the labeled compound was studied in normal rats, showed the major activity in the urine and kidneys as the main excretion route from the body. Considerable uptake was observed in the prostate and salivary glands as the PSMA-expressing organs. These data are in complete agreement with the other published data on PSMA-labeled compounds both in animals and humans. The results demonstrated [113mIn]In-PSMA can be considered as a good option for SPECT imaging of prostate cancer.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Clancy, E. ACS Report Shows Prostate Cancer on the Rise, Cervical Cancer on the Decline. Renal Urol. News 2023, 73, 17–48.Suche in Google Scholar
2. Quiroz-Munoz, M.; Izadmehr, S.; Arumugam, D.; Wong, B.; Kirschenbaum, A.; Levine, A. C. Mechanisms of Osteoblastic Bone Metastasis in Prostate Cancer: Role of Prostatic Acid Phosphatase. J. Endocr. Soc. 2019, 3, 655–664; https://doi.org/10.1210/js.2018-00425.Suche in Google Scholar PubMed PubMed Central
3. Sharifi, M.; Yousefnia, H.; Bahrami-Samani, A.; Jalilian, A. R.; Zolghadri, S.; Alirezapour, B.; Geramifar, P.; Maus, S.; Beiki, D. Optimized Production, Quality Control, Biological Evaluation and PET/CT Imaging of 68Ga-PSMA-617 in Breast Adenocarcinoma Model. Radiochim. Acta 2017, 105, 399–407; https://doi.org/10.1515/ract-2016-2632.Suche in Google Scholar
4. Prostate Cancer: Statistics. https://www.cancer.net/cancer-types/prostate-cancer/statistics.Suche in Google Scholar
5. Ross, J. S.; Sheehan, C. E.; Fisher, H. A.; KaufmanJrR. P.; Kaur, P.; Gray, K.; Webb, L.; Gary, G. S.; Mosher, R.; Kallakury, B. V. Correlation of Primary Tumor Prostate-Specific Membrane Antigen Expression With Disease Recurrence in Prostate Cancer. Clin. Cancer Res. 2003, 9, 6357–6362.Suche in Google Scholar
6. Trover, J. K.; Beckett, M. L.; WrightJrG. L. Detection and Characterization of the Prostate-Specific Membrane Antigen (PSMA) in Tissue Extracts and Body Fluids. Int. J. Cancer 1995, 62, 552–558; https://doi.org/10.1002/ijc.2910620511.Suche in Google Scholar PubMed
7. O’Keefe, D. S.; Su, S. L.; Bacich, D. J.; Horiguchi, Y.; Luo, Y.; Powell, C. T.; Zandvliet, D.; Russell, P. J.; Molloy, P. L.; Nowak, N. J.; Shows, T. B.; Heston, W. D.; Vonder Haar, R. A.; Fair, W. R. Mapping, Genomic Organization and Promoter Analysis of the Human Prostate-Specific Membrane Antigen Gene. Biochim. Biophys. Acta (BBA)-Gene Struct. Expression 1998, 1443, 113–127; https://doi.org/10.1016/s0167-4781(98)00200-0.Suche in Google Scholar PubMed
8. Pinto, J. T.; Suffoletto, B. P.; Berzin, T. M.; Qiao, C. H.; Lin, S.; Tong, W. P.; May, F.; Mukherjee, B.; Heston, W. D. Prostate-Specific Membrane Antigen: A Novel Folate Hydrolase in Human Prostatic Carcinoma Cells. Clin. Cancer Res.:Off. J. Am. Assoc. Cancer Res. 1996, 2, 1445–1451.Suche in Google Scholar
9. Ghosh, A.; Heston, W. D. Tumor Target Prostate Specific Membrane Antigen (PSMA) and Its Regulation in Prostate Cancer. J. Cell. Biochem. 2004, 91, 528–539; https://doi.org/10.1002/jcb.10661.Suche in Google Scholar PubMed
10. Fendler, W. P.; Calais, J.; Eiber, M.; Flavell, R. R.; Mishoe, A.; Feng, F. Y.; Nguyen, H. G.; Reiter, R. E.; Rettig, M. B.; Okamoto, S.; Emmett, L.; Zacho, H. D.; Ilhan, H.; Wetter, A.; Rischpler, C.; Schoder, H.; Burger, I. A.; Gartmann, J.; Smith, R.; Small, E. J.; Slavik, R.; Carroll, P. R.; Herrmann, K.; Czernin, J.; Hope, T. A. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol. 2019, 5, 856–863; https://doi.org/10.1001/jamaoncol.2019.0096.Suche in Google Scholar PubMed PubMed Central
11. Giesel, F. L.; Hadaschik, B.; Cardinale, J.; Radtke, J.; Vinsensia, M.; Lehnert, W.; Kesch, C.; Tolstov, Y.; Singer, S.; Grabe, N.; Duensing, S.; Schäfer, M.; Neels, O. C.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. F-18 Labelled PSMA-1007: Biodistribution, Radiation Dosimetry and Histopathological Validation of Tumor Lesions in Prostate Cancer Patients. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 678–688; https://doi.org/10.1007/s00259-016-3573-4.Suche in Google Scholar PubMed PubMed Central
12. Rosar, F.; Schaefer-Schuler, A.; Bartholomä, M.; Maus, S.; Petto, S.; Burgard, C.; Privé, B. M.; Franssen, G. M.; Derks, Y. H. W.; Nagarajah, J.; Khreish, F.; Ezziddin, S. [89Zr] Zr-PSMA-617 PET/CT in Biochemical Recurrence of Prostate Cancer: First Clinical Experience From a Pilot Study Including Biodistribution and Dose Estimates. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4736–4747; https://doi.org/10.1007/s00259-022-05925-3.Suche in Google Scholar PubMed PubMed Central
13. Singh, B.; Sharma, S.; Bansal, P.; Hooda, M.; Singh, H.; Parihar, A. S.; Kumar, A.; Watts, A.; Mohan, R.; Singh, S. K. Comparison of the Diagnostic Utility of 99mTc-PSMA Scintigraphy Versus 68Ga-PSMA-11 PET/CT in the Detection of Metastatic Prostate Cancer and Dosimetry Analysis: a Gamma-Camera-Based Alternate Prostate-specific Membrane Antigen Imaging Modality. Nucl. Med. Commun. 2021, 42, 482–489; https://doi.org/10.1097/mnm.0000000000001361.Suche in Google Scholar
14. Fuscaldi, L. L.; Sobral, D. V.; Durante, A. C. R.; Mendonça, F. F.; Miranda, A. C. C.; Salgueiro, C.; Castiglia, S. G.; Yamaga, L. Y. I.; Cunha, M. L.; Malavolta, L.; Barboza, M. F.; Mejia, J. Radiochemical and Biological Assessments of a PSMA-I&S Cold Kit for Fast and Inexpensive 99mTc-Labeling for SPECT Imaging and Radioguided Surgery in Prostate Cancer. Front. Chem. 2023, 11, 1–10; https://doi.org/10.3389/fchem.2023.1271176.Suche in Google Scholar PubMed PubMed Central
15. Rauscher, I.; Maurer, T.; Souvatzoglou, M.; Beer, A. J.; Vag, T.; Wirtz, M.; Weirich, G.; Wester, H. J.; Gschwend, J. E.; Schwaiger, M.; Schottelius, M.; Eiber, M. Intrapatient Comparison of 111In-PSMA I&T SPECT/CT and Hybrid 68Ga-HBED-CC PSMA PET in Patients With Early Recurrent Prostate Cancer. Clin. Nucl. Med. 2016, 41, e397–e402; https://doi.org/10.1097/rlu.0000000000001273.Suche in Google Scholar
16. Tateishi, U. Prostate-Specific Membrane Antigen (PSMA)–Ligand Positron Emission Tomography and Radioligand Therapy (RLT) of Prostate Cancer. Jpn. J. Clin. Oncol. 2020, 50, 349–356; https://doi.org/10.1093/jjco/hyaa004.Suche in Google Scholar PubMed PubMed Central
17. Sinnes, J. P.; Bauder-Wüst, U.; Schäfer, M.; Moon, E. S.; Kopka, K.; Rösch, F. 68 Ga, 44 Sc and 177 Lu-Labeled AAZTA 5-PSMA-617: Synthesis, Radiolabeling, Stability and Cell Binding Compared to DOTA-PSMA-617 Analogues. EJNMMI Radiopharm. Chem. 2020, 5, 1–11; https://doi.org/10.1186/s41181-020-00107-8.Suche in Google Scholar PubMed PubMed Central
18. Imura, R.; Ozeki, A. N.; Shida, N.; Kobayashi, M.; Ida, H.; Wada, Y.; Akimitsu, N.; Kumakura, Y. Radiolabeling of PSMA-617 with 89Zr: A Novel Use of DMSO to Improve Radiochemical Yield and Preliminary Small-Animal PET Results. Nucl. Med. Biol. 2022, 106, 21–28; https://doi.org/10.1016/j.nucmedbio.2021.12.003.Suche in Google Scholar PubMed
19. Sharifi, M.; Jalilian, A. R.; Yousefnia, H.; Alirezapour, B.; Bahrami-Samani, A.; Zolghadri, S. Production, Quality Control, Biodistribution and Imaging Studies of 177Lu-PSMA-617 in Breast Adenocarcinoma Model. Radiochim. Acta 2018, 106, 507–513; https://doi.org/10.1515/ract-2017-2874.Suche in Google Scholar
20. Chu, S. Y. F. The Lund/LBNL Nuclear Data Search, 1999. http://nucleardata.nuclear.lu.se/nucleardata/toi/index.asp.Suche in Google Scholar
21. Bolorinovin, F.; Mirzaei, M.; Faghihi, R.; Joharidaha, F.; Sina, S.; Hadad, K.; Yousefnia, H. Design and Construction of a 113Sn/113mIn Generator Using Irradiation of Natural Indium in a Cyclotron Accelerator. J. Nucl. Sci. Eng. Technol. (JONSAT) 2024, 45, 99–106.Suche in Google Scholar
22. Mostafa, M.; AA, E. S.; El-Said, H.; MA, E. A. 99Mo/99mTc-113Sn/113mIn Dual Radioisotope Generator Based on 6-tungstocerate (IV) Column Matrix. J. Nucl. Radiochem. Sci. 2009, 10, 1_1–1_12.10.14494/jnrs.10.1_1Suche in Google Scholar
23. Stern, H. S.; Zolle, I.; McAfee, J. G. Preparation of Technetium (Tc99m)-Labeled Serum Albumin (Human). Int. J. Appl. Radiat. Isot. 1965, 16, 283–288; https://doi.org/10.1016/0020-708x(65)90182-1.Suche in Google Scholar PubMed
24. Brookeman, V. A.; Sun, P. C.; Bruno, F. P.; Dunavant, B. G.; Mauderli, W. Internal Distribution and Absorbed Dose Calculations for Radioactive Indium Liver and Lung Scanning Agents. Am. J. Roentgenol. 1970, 109, 735–741; https://doi.org/10.2214/ajr.109.4.735.Suche in Google Scholar PubMed
25. O’Mara, R. E.; Subramanian, G.; McAfee, J. G.; Burger, C. L. Comparison of 113mIn and Other Short-Lived Agents for Cerebral Scanning. J. Nucl. Med. 1969, 10, 18–27.Suche in Google Scholar
26. Ruth, T. J. The Shortage of Technetium-99m and Possible Solutions. Annu. Rev. Nucl. Part. Sci. 2020, 70, 77–94; https://doi.org/10.1146/annurev-nucl-032020-021829.Suche in Google Scholar
27. Kinoshita, Y.; Kuratsukuri, K.; Landas, S.; Imaida, K.; Rovito, P. M.; Wang, C. Y.; Haas, G. P. Expression of Prostate-Specific Membrane Antigen in Normal and Malignant Human Tissues. World J. Surg. 2006, 30, 628–636; https://doi.org/10.1007/s00268-005-0544-5.Suche in Google Scholar PubMed
28. Murce, E.; Beekman, S.; Spaan, E.; Handula, M.; Stuurman, D.; de Ridder, C.; Seimbille, Y. Preclinical Evaluation of a PSMA-Targeting Homodimer With an Optimized Linker for Imaging of Prostate Cancer. Molecules 2023, 28, 4022; https://doi.org/10.3390/molecules28104022.Suche in Google Scholar PubMed PubMed Central
29. Naderi, M.; Zolghadri, S.; Yousefnia, H.; Ramazani, A.; Jalilian, A. R. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs. Asia Oceania J. Nucl. Med. Biol. 2016, 4, 19–29; https://doi.org/10.7508/aojnmb.2016.04.004.Suche in Google Scholar PubMed PubMed Central
30. Vidaud, C.; Bourgeois, D.; Meyer, D. Bone as Target Organ for Metals: The Case of F-Elements. Chem. Res. Toxicol. 2012, 25, 1161–1175; https://doi.org/10.1021/tx300064m.Suche in Google Scholar PubMed
31. Hadisi, M.; Vosoughi, N.; Yousefnia, H.; Bahrami-Samani, A.; Zolghadri, S.; Vosoughi, S.; Alirezapour, B. Preclinical Evaluation of 188 Re-HYNIC-PSMA as a Novel Therapeutic Agent. J. Radioanal. Nucl. Chem. 2022, 331, 841–849; https://doi.org/10.1007/s10967-021-08173-1.Suche in Google Scholar
32. Sharifi, M.; Yousefnia, H.; Zolghadri, S.; Bahrami-Samani, A.; Naderi, M. A.; Jalilian, A. R.; Geramifar, P.; Beiki, D. Preparation and Biodistribution Assessment of 68Ga-DKFZ-PSMA-617 for PET Prostate Cancer Imaging. Nucl. Sci. Tech. 2016, 27, 142; https://doi.org/10.1007/s41365-016-0134-2.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm
- Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution
- Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
- Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution
- Synthesis, in silico and biodistribution studies of a novel 47Sc-radiolabeled α-amino acid ester derivative attached to pyrazine and tetrazole rings for tumor targeted radiotherapy
- [113mIn]In-PSMA: high potential agent for SPECT imaging of prostate cancer
- Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles
- Identification and time evolution of thionyl chloride (SOCl2) radiolysis products
- Measurement of gross alpha radioactivity levels and estimation of annual effective dose in hazelnut kernels
- Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Independent isomeric yield ratios of fission products in the epi-cadmium neutron-induced fission of 245Cm
- Preparation of MnO2 modified winter melon-derived biochar for enhanced adsorption of U(VI) from aqueous solution
- Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
- Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution
- Synthesis, in silico and biodistribution studies of a novel 47Sc-radiolabeled α-amino acid ester derivative attached to pyrazine and tetrazole rings for tumor targeted radiotherapy
- [113mIn]In-PSMA: high potential agent for SPECT imaging of prostate cancer
- Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles
- Identification and time evolution of thionyl chloride (SOCl2) radiolysis products
- Measurement of gross alpha radioactivity levels and estimation of annual effective dose in hazelnut kernels
- Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy