Home Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution
Article
Licensed
Unlicensed Requires Authentication

Study on the adsorption performance of zeolite imidazole frameworks materials for Co(II) and Mn(II) in solution

  • Ping Bao , Yipeng Zhou , Xiaowei Wang , Jinfeng Men , Chengqiang Liang EMAIL logo and Hao Ding EMAIL logo
Published/Copyright: July 24, 2024

Abstract

The radionuclides 60Co and 54Mn are the main activation products produced in the operation of nuclear power facilities. Wastewater with these radionuclides must be treated to meet standards before being discharged. A variety of zeolite imidazole frameworks (ZIFs) materials were synthesized at room temperature, and the adsorption effect of ZIF-67 was found to be the best through adsorption experiments on Co(II) and Mn(II). The thermal stability test and structural characterization of ZIF-67 were carried out. At the same time, the influence of the initial pH value, adsorption time, and initial concentration of the solution on the adsorption of Co(II) and Mn(II) by ZIF-67 was investigated. The results show that: ZIF-67 has a microporous structure with a BET surface area of 1,035.72 m2/g. In addition, ZIF-67 has good thermal stability, under the condition of pH = 6, a temperature of 303 K and the initial concentration of 500 mg/L. The saturated adsorption capacity for Co(II) and Mn(II) reached 230.25 mg/g and 338.75 mg/g, respectively. ZIF-67 exhibits good selective adsorption performance for Co(II) and Mn (II) in high concentration interfering ion solutions and multi-ion solutions. The adsorption process of ZIF-67 was analyzed by kinetics, thermodynamics, isotherms, and adsorption diffusion models. The analysis of thermodynamic parameters shows that the adsorption process of ZIF-67 to Co(II) and Mn(II) is spontaneous and endothermic. The pseudo-second-order kinetic model, Langmuir isotherm model, and Boyd model are more in line with the adsorption process of Co(II) and Mn(II) by ZIF-67. It shows that the active sites on the surface of ZIF-67 are evenly distributed, and the adsorption process is single-molecule chemical layer adsorption. In addition, the liquid film diffusion dominates the adsorption rate during the adsorption process of Co(II) and Mn(II) by ZIF-67.


Corresponding authors: Chengqiang Liang and Hao Ding, Department of Nuclear Science and Engineering, Naval University of Engineering, Wuhan, 430033, China, E-mail: (C. Liang), (H. Ding).

  1. Research ethics: Not applicable.

  2. Author contributions: Ping Bao: conceptualization, methodology, experiment and original draft preparation. Yipeng Zhou: data analysis and writing. Xiaowei Wang: data analysis and writing. Jinfeng Men: data analysis, writing. Chengqiang Liang: data analysis, writing and supervision. Hao Ding: writing, reviewing and editing.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Li, D. M.; Li, F. Z.; Liao, J. L.; Yang, J. J.; Li, B.; Chen, Y. M.; Yang, Y. Y.; Zhang, J. S.; Tang, J.; Liu, N. Efficient Removal of Co(II) from Aqueous Solution by Titanate Sodium Nanotubes. Nucl. Sci. Tech. 2016, 27, 143; https://doi.org/10.1007/s41365-016-0135-1.Search in Google Scholar

2. Reaney, S. H.; Kwik, U.; Catherine, L.; Smith, D. R. Manganese Oxidation State and its Implications for Toxicity. Chem. Res. Toxicol. 2002, 15 (9), 1119–1126; https://doi.org/10.1021/tx025525e.Search in Google Scholar PubMed

3. Barakat, M. A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arabian J. Chem. 2011, 4 (4), 361–377; https://doi.org/10.1016/j.arabjc.2010.07.019.Search in Google Scholar

4. Narin, I.; Soylak, M. Enrichment and Determinations of Nickel(II), Cadmium(II), Copper(II), Cobalt(II) and Lead(II) Ions in Natural Waters, Table Salts, Tea and Urine Samples as Pyrrolydine Dithiocarbamate Chelates by Membrane Filtration-Flame Atomic Absorption Spectrometry C. Anal. Chim. Acta 2003, 493 (2), 205–212; https://doi.org/10.1016/s0003-2670(03)00867-5.Search in Google Scholar

5. Patil, D. S.; Chavan, S. M.; Oubagaranadin, J. U. K. A Review of Technologies for Manganese Removal from Wastewaters. J. Environ. Chem. Eng. 2016, 4 (1), 468–487; https://doi.org/10.1016/j.jece.2015.11.028.Search in Google Scholar

6. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room Temperature Synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553–8557; https://doi.org/10.1016/j.tet.2008.06.036.Search in Google Scholar

7. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic Design of Pore Size and Functionality in Isoreticular Mofs and Their Application in Methane Storage. Science 2002, 295 (5554), 469–472; https://doi.org/10.1126/science.1067208.Search in Google Scholar PubMed

8. Li, B.; Zhang, Y.; Ma, D.; Lu, L.; Li, G.; Li, G.; Shi, Z.; Feng, S. A Strategy toward Constructing a Bifunctionalized Mof Catalyst: Post-synthetic Modification of Mofs on Organic Ligands and Coordinatively Unsaturated Metal Sites. Chem. Commun. 2012, 48 (49), 6151–6153; https://doi.org/10.1039/c2cc32384b.Search in Google Scholar PubMed

9. Hu, Z.; Deibert, B. J.; Li, J. Luminescent Metal–Organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43 (16), 5815–5840; https://doi.org/10.1039/c4cs00010b.Search in Google Scholar PubMed

10. Cunha, D.; Yahia, M. B.; Hall, S.; Miller, S. R.; Chevreau, H.; Elka, M. E.; Maurin, G.; Horcajada, P.; Serre, C. Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal-Organic Frameworks. Chem. Mater. 2013, 25 (14), 2767–2776; https://doi.org/10.1021/cm400798p.Search in Google Scholar

11. Wu, C. D.; Hu, A. G.; Lin, Z.; Lin, W. B. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. J. Am. Chem. Soc. 2005, 127 (25), 8940–8941; https://doi.org/10.1021/ja052431t.Search in Google Scholar PubMed

12. Li, K.; Miwornunyuie, N.; Chen, L.; Huang, J.; Amaniampong, P. S.; Koomson, D. A.; Ewusi-Mensah, D.; Xue, W.; Li, G.; Lu, H. Sustainable Application of ZIF-8 for Heavy-Metal Removal in Aqueous Solutions. Sustainability 2021, 13 (2), 984; https://doi.org/10.3390/su13020984.Search in Google Scholar

13. Esrafili, L.; Safarifard, V.; Tahmasebi, E.; Esrafili, M. D.; Morsali, A. Functional Group Effect of Isoreticular Metal-Organic Frameworks on Heavy Metal Ion Adsorption. New J. Chem. 2018, 42, 8864–8873; https://doi.org/10.1039/c8nj01150h.Search in Google Scholar

14. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939–943; https://doi.org/10.1126/science.1152516.Search in Google Scholar PubMed

15. Lopachin, R. M.; Gavin, T.; Decaprio, A.; Barber, D. S. Application of the Hard and Soft, Acids and Bases (HSAB) Theory to Toxicant-Target Interactions. Chem. Res. Toxicol. 2012, 25 (2), 239–251; https://doi.org/10.1021/tx2003257.Search in Google Scholar PubMed PubMed Central

16. Mahmoodi, N. M.; Taghizadeh, M.; Taghizadeh, A.; Abdi, J.; Hayati, B.; Shekarchi, A. A. Bio-based Magnetic Metal-Organic Framework Nanocomposite: Ultrasound-Assisted Synthesis and Pollutant (Heavy Metal and Dye) Removal from Aqueous Media. Appl. Surf. Sci. 2019, 480, 288–299; https://doi.org/10.1016/j.apsusc.2019.02.211.Search in Google Scholar

17. Li, X.; Gao, X.; Ai, L.; Jiang, J. Mechanistic Insight into the Interaction and Adsorption of Cr(VI) with Zeolitic Imidazolate Framework-67 Microcrystals from Aqueous Solution. Chem. Eng. J. 2015, 274, 238–246; https://doi.org/10.1016/j.cej.2015.03.127.Search in Google Scholar

18. Su, S.; Che, Q.; Liu, Q.; Liu, J.; Zhang, H.; Li, R.; Jing, X.; Wang, J. Zeolitic Imidazolate Framework-67: A Promising Candidate for Recovery of Uranium (VI) from Seawater. Colloids Surf. A 2018, 547 (20), 73–80; https://doi.org/10.1016/j.colsurfa.2018.03.042.Search in Google Scholar

19. Du, X. D.; Wang, C. C.; Liu, J. G.; Zhao, X. D.; Zhong, J.; Li, Y. X.; Li, J.; Wang, P. Extensive and Selective Adsorption of ZIF-67 towards Organic Dyes: Performance and Mechanism. J. Colloid Interface Sci. 2017, 506, 437–441; https://doi.org/10.1016/j.jcis.2017.07.073.Search in Google Scholar PubMed

20. Park, K. S.; Zheng, N.; Cté, A. P.; Choi, J. Y.; Yaghi, O. M.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. 2006, 103 (27), 10186–10191; https://doi.org/10.1073/pnas.0602439103.Search in Google Scholar PubMed PubMed Central

21. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2008, 130 (38), 12626–12127; https://doi.org/10.1021/ja805222x.Search in Google Scholar PubMed

22. Yu, L.; Kang, Z.; Ming, H.; Yao, J. Synthesis of ZIF-8 and ZIF-67 Using Mixed-Base and Their Dye Adsorption. Microporous Mesoporous Mater. 2016, 234, 287–292; https://doi.org/10.1016/j.micromeso.2016.07.039.Search in Google Scholar

23. Antonio, N. D.; Jhonny, V. R.; Ting, V. P.; Bimbo, N.; Sapag, K.; Mays, T. J. Flexible ZIFs: Probing Guest-Induced Flexibility with CO2, N2 and Ar Adsorption. J. Appl. Chem. Biotechnol. 2019, 94 (12), 3787–3792; https://doi.org/10.1002/jctb.5947.Search in Google Scholar

24. He, M.; Yao, J.; Liu, Q.; Zhong, Z.; Wang, H. Toluene-Assisted Synthesis of RHO-Type Zeolitic Imidazolate Frameworks: Synthesis and Formation Mechanism of ZIF-11 and ZIF-12. Dalton Trans. 2013, 42 (47), 16608–16613; https://doi.org/10.1039/c3dt52103f.Search in Google Scholar PubMed

25. Yang, T.; Chung, T. S. Room-temperature Synthesis of ZIF-90 Nanocrystals and the Derived Nano-Composite Membranes for Hydrogen Separation. J. Mater. Chem. A 2013, 1 (19), 6081–6090; https://doi.org/10.1039/c3ta10928c.Search in Google Scholar

26. Jiang, S. H.; Nie, C. M.; Lin, D.; Wu, Y. X. The Relationship Between Inductive Effect Descriptor and the Ionization Potential for Amines, Alcohols, Ethers, Thio-Alcohols,and Thio-Ethers. J. Mol. Sci. 2007, 23 (6), 410–416.Search in Google Scholar

27. Hu, Z. G.; Peng, Y. W.; Kang, Z. X.; Qian, Y. H.; Zhao, D. A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UIO-66-type MOFs. Inorg. Chem. 2015, 54 (10), 4862–4868; https://doi.org/10.1021/acs.inorgchem.5b00435.Search in Google Scholar PubMed

28. Hu, G.; Zhang, W.; Chen, Y.; Xu, C.; Han, Z. Removal of Boron from Water by GO/ZIF-67 Hybrid Material Adsorption. Environ. Sci. Pollut. Res. 2020, 27 (10), 1–12; https://doi.org/10.1007/s11356-020-08018-6.Search in Google Scholar PubMed

29. Khan, A. A.; Singh, R. P. Adsorption Thermodynamics of Carbofuran on Sn(Ⅳ) Arsenosilicate in H+, Na+ and Ca2+ Forms. Colloids Surf. 1987, 24 (1), 33–42; https://doi.org/10.1016/0166-6622(87)80259-7.Search in Google Scholar

30. Xing, M.; Wang, J. Nanoscaled Zero Valent Iron/graphene Composite as an Efficient Adsorbent for Co(II) Removal from Aqueous Solution. J. Colloid Interface 2016, 474, 119–128; https://doi.org/10.1016/j.jcis.2016.04.031.Search in Google Scholar PubMed

31. Nightingale, E. R. J. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 1958, 63 (9), 566–567.10.1021/j150579a011Search in Google Scholar

32. Zhang, X.; Liu, Y. Nanomaterials for Radioactive Wastewater Decontamination. Environ. Sci. Nano. 2020, 20 (11), 212–243.Search in Google Scholar

33. Guo, W. L.; Chen, R.; Liu, Y.; Meng, M. J.; Meng, X. G.; Hu, Z. Y.; Song, Z. L. Preparation of Ion-Imprinted Mesoporous Silica SBA-15 Functionalized with Triglycine for Selective Adsorption of Co(II). Colloids Surf. A 2013, 436 (35), 693–703; https://doi.org/10.1016/j.colsurfa.2013.08.011.Search in Google Scholar

34. Altinisik, A.; Gür, E.; Seki, Y. A Natural Sorbent, luffa Cylindrica for the Removal of a Model Basic Dye. J. Hazard. Mater. 2010, 179 (1–3), 658–664; https://doi.org/10.1016/j.jhazmat.2010.03.053.Search in Google Scholar PubMed

35. Rui, M. C. V.; Campinas, M.; Costa, H.; Rosa, M. J. How Do the HSDM and Boyd’s Model Compare for Estimating Intraparticle Difusion Coefcients in Adsorption Processes. Adsorption 2014, 20 (5–6), 737–746; https://doi.org/10.1007/s10450-014-9617-9.Search in Google Scholar

36. Liang, C. Q.; Jia, M. C.; Wang, X. W.; Du, Z. H.; Ding, H. Preparation of Potassium Niobium Sulfide and its Selective Adsorption Properties for Sr2+ and Co2+. J. Radioanal. Nucl. Chem. 2019, 322 (12), 1–11; https://doi.org/10.1007/s10967-019-06685-5.Search in Google Scholar

37. Hassanzadeh, M.; Ghaemy, M. Preparation of Bio-Based Keratin-Derived Magnetic Molecularly Imprinted Polymer Nanoparticles for the Facile and Selective Separation of Bisphenol a From Water. J. Sep. Sci. 2018, 41 (10), 2296–2304; https://doi.org/10.1002/jssc.201701452.Search in Google Scholar PubMed

38. Ajenifuja, E.; Ajao, J. A.; Ajayi, E. O. B. Equilibrium Adsorption Isotherm Studies of Cu(II) and Co(II) in High Concentration Aqueous Solutions on Ag-TiO2-Modified Kaolinite Ceramic Adsorbents. Appl. Water Sci. 2017, 7 (5), 2279–2286; https://doi.org/10.1007/s13201-016-0403-6.Search in Google Scholar

39. Li, H.; Cao, X.; Zhang, C.; Yu, Q.; Zhao, Z.; Niu, X.; Sun, X.; Liu, Y.; Ma, L.; Li, Z. Enhanced Adsorptive Removal of Anionic and Cationic Dyes from Single or Mixed Dye Solutions Using MOF PCN-222. Rsc Adv. 2017, 7 (27), 16273–16281; https://doi.org/10.1039/c7ra01647f.Search in Google Scholar

40. Crini, G. Recent Developments in Polysaccharide-Based Materials Used as Adsorbents in Wastewater Treatment. Prog. Polym. Sci. 2005, 30 (1), 38–70; https://doi.org/10.1016/j.progpolymsci.2004.11.002.Search in Google Scholar

41. Fang, F.; Kong, L.; Huang, J.; Wu, S.; Zhang, K.; Wang, X.; Sun, B.; Jin, Z.; Wang, J.; Huang, X. J.; Liu, J. Removal of Cobalt Ions from Aqueous Solution by an Amination Graphene Oxide Nanocomposite. J. Hazard. Mater. 2014, 270 (15), 1–10; https://doi.org/10.1016/j.jhazmat.2014.01.031.Search in Google Scholar PubMed

42. Moghadam, R. M.; Khosravi, N. M.; Anvaripour, B. E. Quilibrium, Kinetics and Thermodynamics Studies on Adsorptive Removal of Cobalt Ions from Wastewater Using MIL-100(Fe). Int. J. Sustainable Eng. 2018, 12, 1–10.10.1080/19397038.2018.1547330Search in Google Scholar

43. Liu, Y., Zhong, G., Liu, Z. Preparation of Core-Shell Ion Imprinted Nanoparticles via Photoinitiated Polymerization at Ambient Temperature for Dynamic Removal of Cobalt in Aqueous Solution. RSC Adv. 2015, 104(5), 85691–85704.10.1039/C5RA13224JSearch in Google Scholar

44. Qiu, R. F.; Cheng, F. Q. Modification of Waste Coal Gangue and its Application in the Removal of Mn2+ From Aqueous Solution. Water Sci. Technol. 2016, 74 (2), 524–534; https://doi.org/10.2166/wst.2016.235.Search in Google Scholar PubMed

45. Xu, R.; Zhou, G.; Tang, Y.; Chu, L.; Liu, C.; Zeng, Z.; Luo, S. New Double Network Hydrogel Adsorbent: Highly Efficient Removal of Cd(II) and Mn(II) Ions in Aqueous Solution. Chem. Eng. J. 2015, 275, 179–188; https://doi.org/10.1016/j.cej.2015.04.040.Search in Google Scholar

46. Ma, L.; Peng, Y.; Wu, B.; Lei, D.; Xu, H. Pleurotus Ostreatus Nanoparticles as a New Nano-Biosorbent for Removal of Mn(II) from Aqueous Solution. Chem. Eng. J. 2013, 225, 59–67; https://doi.org/10.1016/j.cej.2013.03.044.Search in Google Scholar

47. Dawodu, F. A.; Akpomie, K. G. Simultaneous Adsorption of Ni(II) and Mn(II) Ions from Aqueous Solution unto a Nigerian Kaolinite Clay. J. Mater. Res. Technol. 2014, 3 (2), 129–141; https://doi.org/10.1016/j.jmrt.2014.03.002.Search in Google Scholar

Received: 2024-01-14
Accepted: 2024-07-07
Published Online: 2024-07-24
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0274/html
Scroll to top button