Startseite Naturwissenschaften Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Physicochemical model of uranium hexafluoride (UF6) radiolysis under action of alpha particles

  • Artem A. Danshin ORCID logo EMAIL logo und Alexey A. Kovalishin
Veröffentlicht/Copyright: 9. Juli 2024

Abstract

A multiscale model describing the kinetics of the processes taking place during the radiolysis of uranium hexafluoride (UF6) has been developed using fundamental physical and chemical principles. The model incorporates both the radiolysis and thermal terms. The processes of the radiolysis products release from the gas phase to the solid and vice versa are taken into account. The predictions of the model are verified against the available experimental data.


Corresponding author: Artem A. Danshin, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Nuclear Energy Agency. Uranium 2007: Resources, Production and Demand; OECD Publishing: Paris, 2008.Suche in Google Scholar

2. ASTM International. Standard Specification for Uranium Hexafluoride Enriched to Less than 5% 235U; ASTM International; No. C0996-20, 2020. https://www.astm.org/c0996-20.html.Suche in Google Scholar

3. Smirnov, A. Y.; Sulaberidze, G. A.; Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A.; Proselkov, V. N.; Chibinyaev, A. V. Evolution of Isotopic Composition of Reprocessed Uranium During the Multiple Recycling in Light Water Reactors with Natural Uranium Feed. Phys. Atom. Nucl. 2012, 75, 1616–1625.10.1134/S1063778812130078Suche in Google Scholar

4. Brigoli, B. Cascade Theory. In Uranium Enrichment, Topics in Applied Physics; Villani, S., Ed.; Springer Berlin: Heidelberg, Vol. 35, 1979; p. 13.10.1007/3-540-09385-0_16Suche in Google Scholar

5. Smirnov, A. Y.; Palkin, V. A.; Chistov, A. V.; Sulaberidze, G. A. A Method for Purifying Reprocessed Uranium from Even Isotopes Under Conditions of Multiple Recycle. Nucl. Eng. Technol. 2022, 54, 3650–3659.10.1016/j.net.2022.05.007Suche in Google Scholar

6. Smirnov, A. Y.; Gusev, V. E.; Sulaberidze, G. A.; Nevinitsa, V. A.; Fomichenko, P. A. Reprocessed Uranium Re-Enrichment in a Double Cascade of Gas Centrifuges Providing its Complete Return to the Nuclear Fuel Cycle. Bullet. Nat. Res. Nucl. Univ. “MEPhI” 2018, 7, 449–457.Suche in Google Scholar

7. Zeng, S.; Zhang, Y.; Smirnov, A. Y.; Borisevich, V. D.; Sulaberidze, G. A.; Gusev, V. E. Development of Schemes from a Single Cascade to Multi-Cascades for Separation of Regenerated Uranium. Prog. Nucl. Energy 2023, 162, 104759.10.1016/j.pnucene.2023.104759Suche in Google Scholar

8. Shiflett, C. H.; Steidlitz, M. E.; Rosen, F. D.; Davis, W. The Chemical Effect of Alpha Particles on Uranium Hexafluoride. J. Inorg. Nucl. Chem. 1958, 7, 210–223.10.1016/0022-1902(58)80072-XSuche in Google Scholar

9. Dmitrievskii, V. A.; Migachev, A. I. Radiolysis of Uranium Hexafluoride. Sov. Atom. Energy 1971, 30, 543–548.10.1007/BF01408758Suche in Google Scholar

10. Oliver, G. D.; Milton, H. T.; Grisard, J. W. The Vapor Pressure and Critical Constants of Uranium Hexafluoride1. J. Am. Chem. Soc. 1953, 75, 2827–2829.10.1021/ja01108a011Suche in Google Scholar

11. Semiokhin, I. A.; Strakhov, B. V.; Osipov, A. I. Kinetics of Chemical Reactions; Moscow University Press: Moscow, 1995.Suche in Google Scholar

12. Breshears, W. D.; Bird, P. F. Density Gradient Measurements of F2 Dissociation Rates in Shock Waves. J. Chem. Phys. 1973, 58, 5176–5177.10.1063/1.1679115Suche in Google Scholar

13. Jensen, F. Introduction to Computational Chemistry; Wiley: Chichester, 2007.Suche in Google Scholar

14. Hiberty, P. C.; Humbel, S. Compact Valence Bond Functions with Breathing Orbitals: Application to the Bond Dissociation Energies of F2 and FH. J. Chem. Phys. 1994, 101, 5969–5976.10.1063/1.468459Suche in Google Scholar

15. Seip, H. M. Studies on the Failure of the First Born Approximation in Electron Diffraction. I. Uranium Hexafluoride. Acta Chem. Scand. 1965, 19, 1955–1968.10.3891/acta.chem.scand.19-1955Suche in Google Scholar

16. Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78.10.1002/wcms.81Suche in Google Scholar

17. Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100.10.1103/PhysRevA.38.3098Suche in Google Scholar

18. Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Energy-Adjusted Pseudopotentials for the Actinides. Parameter Sets and Test Calculations for Thorium and Thorium Monoxide. J. Chem. Phys. 1994, 100, 7535–7542.10.1063/1.466847Suche in Google Scholar

19. Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.10.1039/b508541aSuche in Google Scholar PubMed

20. Hildenbrand, D. L.; Lau, K. H. Redetermination of the Thermochemistry of Gaseous UF5, UF2, and UF. J. Chem. Phys. 1991, 94, 1420–1425.10.1063/1.460000Suche in Google Scholar

21. Ultee, C. J. The Homogeneous Recombination Rate Constant of F Atoms at Room Temperature. Chem. Phys. Lett. 1977, 46, 366–367.10.1016/0009-2614(77)85283-4Suche in Google Scholar

22. Cronenberg, A. W.; Osetek, D. J. Reaction Kinetics of Iodine and Cesium in Steam/Hydrogen Mixtures. Nucl. Technol. 1988, 81, 347–359.10.13182/NT88-A16056Suche in Google Scholar

23. Wren, D. J. Kinetics of Iodine and Cesium Reactions in the CANDU Reactor Primary Heat Transport System Under Accident Conditions; Whiteshell Nuclear Research Establishment: Pinawa, Manitoba, 1983.Suche in Google Scholar

24. Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. Thermodynamic Properties of Individual Substances; Hemisphere Pub Co.: New York, 1989.Suche in Google Scholar

25. Stull, D. R.; Prophet, H. JANAF Thermochemical Tables; U.S. Goverment Printing Office: Washington, 1971.10.6028/NBS.NSRDS.37Suche in Google Scholar

26. Bell, G. I.; Glasstone, S. Nuclear Reactor Theory; Van Nostrand Reinhold Company: New York, 1970.Suche in Google Scholar

27. Steidlitz, M. E.; Rosen, F. D.; Shiflett, C. H.; Davis, W.Jr. Ionization of Fluorocarbon Gases by U234 Alpha-Particles. J. Phys. Chem. 1952, 56, 1010–1012.10.1021/j150500a021Suche in Google Scholar

Received: 2023-12-01
Accepted: 2024-06-14
Published Online: 2024-07-09
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0263/pdf?lang=de
Button zum nach oben scrollen