Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin
Abstract
89Sr is being produced using yttria target via the nuclear reaction 89Y(n,p)89Sr in Fast Breeder Test Reactor (FBTR), Kalpakkam. The isotope 89Sr is a pure beta emitter with a half-life of 50.53 days which is useful mainly for bone pain palliation in patients with bone metastases. The existing method for processing the irradiated yttria target to obtain the pure 89Sr source involves separation of the bulk yttrium target by solvent extraction using TBP-HNO3 followed by purification of 89Sr source by cation exchange chromatography technique using Dowex resin. The study described here involves the selective extraction and purification of 89Sr by multi-column extraction chromatography technique using the Sr-specific crown ether, DtBuCH18C6 (CE) coated onto an XAD-7 resin matrix for superior separation and increased yield compared to single column technique. The 89Sr source thus purified from the irradiated yttria target is free from other radionuclidic impurities produced during the target irradiation i.e. 88Y, 65Zn, 139,141Ce, 154Eu and 160Tb.
Acknowledgements
The authors gratefully acknowledge the contribution and technical support from Shri C.R. Venkata Subramani, former Head, Nuclear & Radioanalytical Chemistry Section and former Raja Ramanna fellow, IGCAR. The continuous support and encouragement from Dr. N. Sivaraman, Head, FChD and Dr. K. Ananthasivan, Associate Director, MFCG are gratefully acknowledged here.
References
1. Saha, D., Vithya, J., Ashok Kumar, G. V. S., Swaminathan, K., Kumar, R., Venkata Subramani, C. R., Vasudeva Rao, P. R.: Feasibility studies for production of 89Sr in the Fast Breeder Test Reactor (FBTR). Radiochim. Acta 101, 667 (2013).10.1524/ract.2013.2055Suche in Google Scholar
2. Orth, R., Brooks, K., Kurath, D.: Review and assessment of technologies for the separation of cesium from acidic media. Battelle Pacific Northwest Lab., Richland, WA (United States), PNL-9874, (1994).10.2172/10184605Suche in Google Scholar
3. Xu, C., Wang, J., Chen, J.: Solvent extraction of strontium and cesium: a review of recent progress. Solvent Extr. Ion Exc. 30, 623 (2012).10.1080/07366299.2012.700579Suche in Google Scholar
4. Sheng, D., Zhu, L., Xu, C., Xiao, C., Wang, Y., Wang, Y., Chen, L., Diwu, J., Chen, J., Chai, Z.: Efficient and selective uptake of TcO4− by a cationic metal–organic framework material with open Ag+ sites. Environ. Sci. Technol. 51, 3471 (2017).10.1021/acs.est.7b00339Suche in Google Scholar PubMed
5. Zhu, L., Zhang, L., Li, J., Zhang, D., Chen, L., Sheng, D., Yang, S., Xiao, C., Wang, J., Chai, Z.: Selenium sequestration in a cationic layered rare earth hydroxide: a combined batch experiments and EXAFS investigation. Environ. Sci. Technol. 51, 8606 (2017).10.1021/acs.est.7b02006Suche in Google Scholar PubMed
6. Zhu, L., Sheng, D., Xu, C., Dai, X., Silver, M. A., Li, J., Li, P., Wang, Y., Wang, Y., Chen, L.: Identifying the recognition site for selective trapping of 99TcO4− in a hydrolytically stable and radiation resistant cationic metal–organic framework. J. Am. Chem. Soc. 139, 14873 (2017).10.1021/jacs.7b08632Suche in Google Scholar PubMed
7. Wang, Y., Liu, Z., Li, Y., Bai, Z., Liu, W., Wang, Y., Xu, X., Xiao, C., Sheng, D., Diwu, J.: Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 137, 6144 (2015).10.1021/jacs.5b02480Suche in Google Scholar PubMed
8. Vajda, N., Kim, C.: Determination of radiostrontium isotopes: a review of analytical methodology. Appl. Radiat. Isot. 68, 2306 (2010).10.1016/j.apradiso.2010.05.013Suche in Google Scholar PubMed
9. Kazakov, A. G., Aliev, R. A., Bodrov, A. Y., Priselkova, A. B., Kalmykov, S. N.: Separation of radioisotopes of terbium from a europium target irradiated by 27 MeV α-particles. Radiochim. Acta 106, 135 (2018).10.1515/ract-2017-2777Suche in Google Scholar
10. Sinharoy, P., Khan, P. N., Nair, D., Jagasia, P., Anitha, M., Dhami, P., Sharma, J., Kaushik, C., Banerjee, K.: Separation of americium (III) and strontium (II) using TEHDGA and 18-crown-6. Radiochim. Acta 105, 265 (2017).10.1515/ract-2016-2646Suche in Google Scholar
11. Wang, J., Jing, S., Chen, J.: Demonstration of a crown ether process for partitioning strontium from high level liquid waste (HLLW). Radiochim. Acta 104, 107 (2016).10.1515/ract-2015-2454Suche in Google Scholar
12. Saha, D., Vithya, J., Kumar, R., Venkata, S., Canchipuram, R., Vasudeva, R. P.: Ranga: studies on the separation of 89Sr (II) from irradiated yttria target using 4, 4′(5′) di-tert-butyl-cyclohexano-18-crown-6 (DtBuCH18C6) by solvent extraction technique. Radiochim. Acta 104, 195 (2016).Suche in Google Scholar
13. Saha, D., Senthil Vadivu, E., Kumar, R., Venkata Subramani, C. R.: Separation of bulk Y from 89Y(n,p) produced 89Sr by extraction chromatography using TBP coated XAD-4 resin. J. Radioanal. Nucl. Chem. 298, 1309 (2013).10.1007/s10967-013-2514-ySuche in Google Scholar
14. Saha, D., G. V. S. Ashok Kumar, J. Vithya, B. Sivakumar, R. Karunakaran, M. Kalaiyarasu, A. Amalraj, M. P. Antony, K. Swaminathan, R. Kumar, Venkata Subramani, C. R.: Bulk scale processing of irradiated Y2O3 target for the purification of 89Sr source. Proceedings. Symp. Emerging Trends in Separation Science & Technology (2012) 220.Suche in Google Scholar
15. Saha, D., Vithya, J., Kumar, R., Venkata Subramani, C. R., Vasudeva Rao, P. R.: Studies on the separation of 89Sr(II) from irradiated yttria target using 4, 4′(5′) di-tert-butyl-cyclohexano-18-crown-6 (DtBuCH18C6) by solvent extraction technique. Radiochim. Acta 104, 195 (2016).10.1515/ract-2015-2399Suche in Google Scholar
16. Markl, P., Schmid, E. R.: Chapter 3 techniques in column extraction chromatography. In: T. Braun, G. Ghersini (Eds.), Extraction Chromatography, Elsevier Science (1975), Amsterdam, The Netherlands, p. 45.10.1016/S0301-4770(08)60969-0Suche in Google Scholar
17. Zhang, A., Wei, Y., Kumagai, M.: Synthesis of a novel macroporous silica-based polymeric material containing 4, 4′,(5′)-di (tert-butylcyclohexano)-18-crown-6 functional group and its adsorption mechanism for strontium. React. Funct. Polym. 61, 191 (2004).10.1016/j.reactfunctpolym.2004.05.004Suche in Google Scholar
18. ASTM, Standard Test Methods for Physical and Chemical Properties of Particulate Ion-Exchange Resins. ASTM International, West Conshohocken, PA (2009).Suche in Google Scholar
19. Harland, C. E.: Ion Exchange: Theory and Practice, Royal Society of Chemistry, (2007).Suche in Google Scholar
20. Dow Answer Center: How is the density of an ion exchange resin measured? Answer ID 147, Updated 06/18/2018 04:30 PM. https://dowac.custhelp.com/app/answers/detail/a_id/147/.Suche in Google Scholar
21. McAlister, D. R., Philip Horwitz, E.: Automated two column generator systems for medical radionuclides. Appl. Radiat. Isot. 67, 1985 (2009).10.1016/j.apradiso.2009.07.019Suche in Google Scholar PubMed
22. Horwitz, E. P., Bond, A. H.: Purification of radionuclides for nuclear medicine: the multicolumn selectivity inversion generator concept. Czech. J. Phys. 53, A713 (2003).10.1007/s10582-003-0091-ySuche in Google Scholar
23. Horwitz, E. P., Chiarizia, R., Dietz, M. L.: A Novel Strontium-selective extraction chromatographic resin. Solvent Extr. Ion Exc. 10, 313 (1992).10.1080/07366299208918107Suche in Google Scholar
24. Dietz, M. L., Yaeger, J., Sajdak Jr, L. R., Jensen, M. P.: Characterization of an improved extraction chromatographic material for the separation and preconcentration of strontium from acidic media. Sep. Sci. Technol. 40, 349 (2005).10.1081/SS-200042247Suche in Google Scholar
25. Horwitz, E. P., Dietz, M. L., Fisher, D. E.: Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal. Chem. 63, 522 (1991).10.1021/ac00005a027Suche in Google Scholar PubMed
26. Horwitz, E. P., Dietz, M. L., Chiarizia, R.: The application of novel extraction chromatographic materials to the characterization of radioactive waste solutions. J. Radioanal. Nucl. Chem. 161, 575 (1992).10.1007/BF02040504Suche in Google Scholar
27. Chiarizia, R., Horwitz, E. P., Dietz, M. L.: Acid dependency of the extraction of selected metal ions by a strontium-selective extraction chromatographic resin: calculated vs. experimental curves. Solvent Extr. Ion Exc. 10, 337 (1992).10.1080/07366299208918108Suche in Google Scholar
28. Jassin, L. E.: Radiochemical separation advancements using extraction chromatography: a review of recent Eichrom Users’ Group Workshop presentations with a focus on matrix interferences. J. Radioanal. Nucl. Chem. 263, 93 (2005).10.1007/s10967-005-0018-0Suche in Google Scholar
29. Ometáková, J., Dulanská, S., Mátel, L., Remenec, B.: A comparison of classical 90Sr separation methods with selective separation using molecular recognition technology products AnaLig® SR-01 gel, 3M Empore™ Strontium Rad Disk and extraction chromatography Sr® Resin. J. Radioanal. Nucl. Chem. 290, 319 (2011).10.1007/s10967-011-1338-xSuche in Google Scholar
30. Anelli, P. L., Czech, B., Montanari, F., Quici, S.: Reaction mechanism and factors influencing phase-transfer catalytic activity of crown ethers bonded to a polystyrene matrix. J. Am. Chem. Soc. 106, 861 (1984).10.1021/ja00316a006Suche in Google Scholar
31. Chung, K. B., Kim, H. H., Chang, S. H.: Polymer-supported crown ehters: adsorption abilities of lariat azacrown ethers. J. Ind. Eng. Chem. 6, 8 (2000).Suche in Google Scholar
32. Mohapatra, P. K., Manchanda, V. K., Soudamini, N., Kumar, A., Kaushik, C. P.: Evaluation of crown ether based extraction chromatographic material for the uptake of 90Sr from high level waste. Proceedings of DAE-BRNS symposium on nuclear and radiochemistry 175 (2005).Suche in Google Scholar
33. Grahek, Ž., Košutić, K., Rožmarić-Mačefat, M.: Strontium isolation from natural samples with Sr resin and subsequent determination of 90 Sr. J. Radioanal. Nucl. Chem. 268, 179 (2006).10.1007/s10967-006-0152-3Suche in Google Scholar
34. Maxwell, S. L.: Rapid analysis of emergency urine and water samples. J. Radioanal. Nucl. Chem. 275, 497 (2008).10.1007/s10967-007-7084-4Suche in Google Scholar
35. Paulenova, A.: Combined extraction chromatography and scintillation detection for off-line and on-line monitoring of strontium in aqueous solutions. J. Radioanal. Nucl. Chem. 249, 295 (2001).10.1023/A:1013225410246Suche in Google Scholar
36. Torres, J. M., Llaurado, M., Rauret, G., Bickel, M., Altzitzoglou, T., Pilviö, R.: Determination of 90Sr in aquatic organisms by extraction chromatography: method validation. Anal. Chim. Acta 414, 101 (2000).10.1016/S0003-2670(00)00834-5Suche in Google Scholar
37. Garmestani, K., Milenic, D. E., Plascjak, P. S., Brechbiel, M. W.: A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl. Med. Biol. 29, 599 (2002).10.1016/S0969-8051(02)00322-0Suche in Google Scholar
38. Zhang, A., Wei, Y., Hoshi, H., Kumagai, M.: Chromatographic separation of strontium (II) from a nitric acid solution containing some typically simulated elements by a novel silica based TODGA impregnated polymeric composite in the MAREC process. Solvent Extr. Ion Exc. 23, 231 (2005).10.1081/SEI-200049894Suche in Google Scholar
39. Zou, Y., Liang, J., Chu, T.: Crown ether–ionic liquid-based extraction chromatographic resin for separation of 90Y from 90Sr. J. Radioanal. Nucl. Chem. 311, 1643 (2017).10.1007/s10967-016-5142-5Suche in Google Scholar
40. Lumetta, G. J., Wester, D. W., Morrey, J. R., Wagner, M. J.: Preliminary evaluation of chromatographic techniques for the separation of radionuclides from high-level radioactive waste. Solvent Extr. Ion Exc. 11, 663 (1993).10.1080/07366299308918180Suche in Google Scholar
41. Mukopadhyay, P. K.: The operating software of the PHAST PC MCA card. Proceedings of the symposium on intelligent nuclear instrumentation 307 (2001).Suche in Google Scholar
42. Klug, C. L.: Preparation and characterization of extraction chromatography resins using N-donor extractants for trivalent actinide and lanthanide separations. University of Nevada, Las Vegas (2010), p. 158.Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging
- Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent
- DST-deactivation of nickel-63 nitrate
- Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin
- Assessment of radioactivity from selected soil samples from Halfa Aljadida area, Sudan
- In situ measurement of terrestrial gamma dose rates in eastern region of Peninsular Malaysia and its relation to geological formation and soil types
- Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system
- Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties
Artikel in diesem Heft
- Frontmatter
- A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging
- Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent
- DST-deactivation of nickel-63 nitrate
- Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin
- Assessment of radioactivity from selected soil samples from Halfa Aljadida area, Sudan
- In situ measurement of terrestrial gamma dose rates in eastern region of Peninsular Malaysia and its relation to geological formation and soil types
- Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system
- Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties