Abstract
The morphological changes that take place during the processing and storage of uranium oxides can provide valuable information on the processing history and storage conditions of an interdicted sample. In this study microstructural changes in two uranium oxides (UO2 and U3O8) due to changes in the aging conditions at elevated temperatures were quantified and modeled using a response surface methodology approach. This allowed the morphological changes to be used as a signature for the aging conditions for nuclear forensic analysis. A Box-Behnken design of experiment was developed using the independent variables: temperature from 100 to 400 °C, aging times from 2 to 48 h, and partial pressure of
Funding source: U.S. Department of Homeland Security
Award Identifier / Grant number: 2015-DN-077-ARI092
Funding source: Defense Threat Reduction Agency
Award Identifier / Grant number: HDTRA1-16-1-0026
Funding statement: This work is supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, Funder Id: http://dx.doi.org/10.13039/100000180, under Grant Award Number 2015-DN-077-ARI092, Defense Threat Reduction Agency, Funder Id: http://dx.doi.org/10.13039/100000774, Grant Number: HDTRA1-16-1-0026. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. This work made use of University of Utah Shared facilities of the Surface Analysis and Nanoscale Imaging Group sponsored by the College of Engineering, Health Sciences Center, Office of the Vice President for Research, and the Utah Science Technology and Research (USTAR) Initiative of the State of Utah.
References
1. Schwerdt, I. J., Olsen, A., Lusk, R., Heffernan, S., Klosterman, M., Collins, B., Martinson, S., Kirkham, T., McDonald IV, L. W.: Nuclear forensics investigation of morphological signatures in the thermal decomposition of uranyl peroxide. Talanta 176, 284 (2018).10.1016/j.talanta.2017.08.020Search in Google Scholar PubMed
2. Moody, K. J., Grant, P. M., Hutcheon, I. D.: Nuclear Forensic Analysis (2014), CRC Press, Boca Raton.Search in Google Scholar
3. Olsen, A. M., Richards, B., Schwerdt, I., Heffernan, S., Lusk, R., Smith, B., Jurrus, E., Ruggiero, C. E., McDonald, L. W.: Quantifying morphological features of α-U3O8 with image analysis for nuclear forensics. Anal. Chem. 89, 3177 (2017).10.1021/acs.analchem.6b05020Search in Google Scholar PubMed
4. Schwerdt, I. J., Brenkmann, A., Martinson, S., Albrecht, B. D., Heffernan, S., Klosterman, M. R., Kirkham, T., Tasdizen, T., McDonald IV, L. W.: Nuclear proliferomics: a new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO3. Talanta 186, 433 (2018).10.1016/j.talanta.2018.04.092Search in Google Scholar PubMed
5. Tamasi, A. L., Cash, L. J., Tyler Mullen, W., Ross, A. R., Ruggiero, C. E., Scott, B. L., Wagner, G. L., Walensky, J. R., Zerkle, S. A., Wilkerson, M. P.: Comparison of morphologies of a uranyl peroxide precursor and calcination products. J. Radioanal. Nucl. Chem. 309, 827 (2016).10.1007/s10967-016-4692-xSearch in Google Scholar
6. Kim, K.-W., Hyun, J.-T., Lee, K.-Y., Lee, E.-H., Lee, K.-W., Song, K.-C., Moon, J.-K.: Effects of the different conditions of uranyl and hydrogen peroxide solutions on the behavior of the uranium peroxide precipitation. J. Haz. Mat. 193, 52 (2011).10.1016/j.jhazmat.2011.07.032Search in Google Scholar
7. Keegan, E., Kristo, M. J., Colella, M., Robel, M., Williams, R., Lindvall, R., Eppich, G., Roberts, S., Borg, L., Gaffney, A.: Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia. Forensic Sci. Int. 240, 111 (2014).10.1016/j.forsciint.2014.04.004Search in Google Scholar
8. Manna, S., Basak, C., Thakkar, U. R., Thakur, S., Roy, S. B., Joshi, J. B.: Study on effect of process parameters and mixing on morphology of ammonium diuranate. J. Radioanal. Nucl. Chem. 310, 287 (2016).10.1007/s10967-016-4883-5Search in Google Scholar
9. Erdmann, N., Betti, M., Stetzer, O., Tamborini, G., Kratz, J., Trautmann, N., Van Geel, J.: Production of monodisperse uranium oxide particles and their characterization by scanning electron microscopy and secondary ion mass spectrometry. Spectrochim. Acta B 55, 1565 (2000).10.1016/S0584-8547(00)00262-7Search in Google Scholar
10. Plaue, J.: Forensic signatures of chemical process history in uranium oxides (doctoral dissertation) [dissertation]; 2013.Search in Google Scholar
11. Harada, Y.: UO2 sintering in controlled oxygen atmospheres of three-stage process. J. Nucl. Mater. 245, 217 (1997).10.1016/S0022-3115(96)00755-6Search in Google Scholar
12. Gao, J.-C., Li, R., Zhong, F.-W., Yang, X.-D., Wang, Y.: Progress in processes of uranium dioxides pellets. J. Funct. Mater. 37, 849 (2006).Search in Google Scholar
13. Yang, X.-D., Gao, J.-C., Yong, W., Chang, X.: Low-temperature sintering process for UO2 pellets in partially-oxidative atmosphere. T. Nonferr. Metal. Soc. 18, 171 (2008).10.1016/S1003-6326(08)60031-XSearch in Google Scholar
14. Lee, Y., Yang, M.: Characterization of HWR fuel pellets fabricated using UO2 powders from different conversion processes. J. Nucl. Mater. 178, 217 (1991).10.1016/0022-3115(91)90389-OSearch in Google Scholar
15. Martinez, J., Clavier, N., Ducasse, T., Mesbah, A., Audubert, F., Corso, B., Vigier, N., Dacheux, N.: From uranium (IV) oxalate to sintered UO2: consequences of the powders’ thermal history on the microstructure – U3O8. J. Eur. Ceram. Soc. 35, 4535 (2015).10.1016/j.jeurceramsoc.2015.07.010Search in Google Scholar
16. Song, K. W., Kim, K. S., Kim, Y. M., Jung, Y. H.: Sintering of mixed UO2 and U3O8 powder compacts. J. Nucl. Mater. 277, 123 (1999).10.1016/S0022-3115(99)00212-3Search in Google Scholar
17. McEachern, R.: A review of kinetic data on the rate of U3O7 formation on UO2. J. Nucl. Mater. 245, 238 (1997).10.1016/S0022-3115(96)00733-7Search in Google Scholar
18. Alberman, K., Anderson, J.: The oxides of uranium. J. Chem. Soc. S303 (1949).10.1039/jr949000s303Search in Google Scholar
19. Aronson, S., Roof Jr, R., Belle, J.: Kinetic study of the oxidation of uranium dioxide. J. Chem. Phys. 27, 137 (1957).10.1063/1.1743653Search in Google Scholar
20. Olsen, A., Schwerdt, I., Richards, B., McDonald, L. W.: Quantification of high temperature oxidation of U3O8 and UO2. J. Nucl. Mater. (2018).10.1016/j.jnucmat.2018.06.025Search in Google Scholar
21. IAEA: Uranium Extraction Technology. Vienna (1993),Search in Google Scholar
22. Pijolat, M., Brun, C., Valdivieso, F., Soustelle, M.: Reduction of uranium oxide U3O8 to UO2 by hydrogen. Solid State Ionics 101, 931 (1997).10.1016/S0167-2738(97)00385-8Search in Google Scholar
23. Box, G. E., Behnken, D. W.: Some new three level designs for the study of quantitative variables. Technometrics 2, 455 (1960).10.1080/00401706.1960.10489912Search in Google Scholar
24. Weather Underground: Weather History for KSLC – January, 2017 to December, 2017. 2018 (2017).Search in Google Scholar
25. Ruggiero, C., Porter, R.: MAMA Morphological Analysis of Materials User Guide. 2.1 (2016).Search in Google Scholar
26. The MathWorks, I.: MATLAB Release 2016a. (2016).Search in Google Scholar
27. Tamasi, A. L., Cash, L. J., Eley, C., Porter, R. B., Pugmire, D. L., Ross, A. R., Ruggiero, C. E., Tandon, L., Wagner, G. L., Walensky, J. R.: A lexicon for consistent description of material images for nuclear forensics. J. Radioanal. Nucl. Chem. 307, 1611 (2015).10.1007/s10967-015-4455-0Search in Google Scholar
28. Katz, J., Gruen, D.: Higher Oxides of the Actinide Elements. The Preparation of Np3O8. J. Am. Chem. Soc. 71, 2106 (1949).10.1021/ja01174a056Search in Google Scholar
29. Ruggiero, C. E., Porter, R. B.: MAMA Software Features: Attribute Summary (2016).Search in Google Scholar
30. Kolmogoroff, A.: Confidence limits for an unknown distribution function. Ann. Math. Stat. 12, 461 (1941).10.1214/aoms/1177731684Search in Google Scholar
31. Young, I. T.: Proof without prejudice: use of the Kolmogorov- Smirnov test for the analysis of histograms from flow systems and other sources. J. Histochem. Cytochem. 25, 935 (1977).10.1177/25.7.894009Search in Google Scholar PubMed
32. Vigneau, E., Loisel, C., Devaux, M., Cantoni, P.: Number of particles for the determination of size distribution from microscopic images. Powder Technol. 107, 243 (2000).10.1016/S0032-5910(99)00192-8Search in Google Scholar
33. Morgan, E. D.: Chemometrics: Experemental Design, Vol. 14. Wiley India Pvt. Limited, Noida, India (1995).Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3040).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging
- Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent
- DST-deactivation of nickel-63 nitrate
- Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin
- Assessment of radioactivity from selected soil samples from Halfa Aljadida area, Sudan
- In situ measurement of terrestrial gamma dose rates in eastern region of Peninsular Malaysia and its relation to geological formation and soil types
- Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system
- Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties
Articles in the same Issue
- Frontmatter
- A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging
- Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent
- DST-deactivation of nickel-63 nitrate
- Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin
- Assessment of radioactivity from selected soil samples from Halfa Aljadida area, Sudan
- In situ measurement of terrestrial gamma dose rates in eastern region of Peninsular Malaysia and its relation to geological formation and soil types
- Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system
- Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties