Home DST-deactivation of nickel-63 nitrate
Article
Licensed
Unlicensed Requires Authentication

DST-deactivation of nickel-63 nitrate

  • Fabio Cardone , Gianni Albertini EMAIL logo , Domenico Bassani , Giovanni Cherubini , Andrea Petrucci and Alberto Rosada
Published/Copyright: January 6, 2019

Abstract

Recent theoretical and experimental results, based on an extension of the Einstein theory of relativity, show that nuclear reactions of a new type can occur. In this framework, the feasibility of the deactivation of radionuclides is investigated. This paper reports the deactivation of nickel nitrate made of radioactive Nickel-63 in nitric acid by using ultrasounds. From the applicative point of view, it is a more realistic system then the previously considered thorium, not only because the molecule and the system are more complex but also because the problems related to the high corrosion and radioactivity have been treated at the same time, thus miming realistic situations like those of deactivation of nuclear waste.

Acknowledgments

The authors are deeply grateful to Capuchins Friars Rev. Brother Giancarlo Fiorini (OFM. Cap.) Superior of the St. Lorenzo Monastery and Rev. Brother Armando Ambrosi (OFM. Cap.) Parish Priest of the St. Lorenzo Basilica in Rome, Italy, for their generous help in setting the laboratory where the present work has been carried out. Moreover, we acknowledge Prof. Silvia Dari from La Sapienza Rome1 University and the firm IT Service based in Viterbo, Italy, for their useful help in the initial data handling to enlighten the new phenomenon of the DST-deactivation of a radioactive substance.

References

1. Cardone, F., Mignani, R.: Possible evidence for transformation of chemical elements in cavitated water. Int. J. Mod. Phys. B 17, 307 (1995).10.1142/S0217979203015759Search in Google Scholar

2. Cardone, F., Mignani, R., Perconti, W., Pessa, E., Spera, G.: Possibile evidence for production of an artificial radionuclide in cavitated water. J. Radioanal. Nucl. Chem. 265, 151 (2005).10.1007/s10967-005-0803-9Search in Google Scholar

3. Cardone, F., Mignani, R., Perconti, W., Pessa, E., Spera, G.: Nucleosynthesis of an artificial radionuclide by cavitation. Gravit. Cosmol. 11(1–2), 41 (2005).Search in Google Scholar

4. Cardone, F., Cherubini, G., Mignani, R., Perconti, W., Petrucci, A., Rosetto, F., Spera, G.: Neutrons from piezonuclear reactions. Ann. Fond. Louis Broglie 34, 138 (2009).Search in Google Scholar

5. Cardone, F., Cherubini, G., Petrucci, A.: Piezonuclear neutrons. Phys. Lett. A 373(8–9), 862 (2009).10.1016/j.physleta.2008.12.060Search in Google Scholar

6. Cardone, F., Mignani, R., Monti, M., Petrucci, A., Sala, V.: Piezonuclear neutrons from iron. Mod. Phys. Lett. A 27(18), 1250102 (2012).10.1142/S0217732312501027Search in Google Scholar

7. Ridolfi, F., Cardone, F., Albertini, G.: Ultrasonic damage in iron. J. Adv. Phys. 2, 1 (2013).10.1166/jap.2013.1045Search in Google Scholar

8. Cardone, F., Mignani, R.: Energy and Geometry, World Scientific, Singapore (2004).10.1142/5449Search in Google Scholar

9. Cardone, F., Mignani, R.: Deformed Spacetime, Springer, Dordrecht, The Netherlands (2007).10.1007/978-1-4020-6283-4Search in Google Scholar

10. Cardone, F., Calbucci, V., Albertini, G.: Deformed space time of the piezonuclear emissions. Mod. Phys. Lett. B 28(2), 14500122 (2014).10.1142/S0217984914500122Search in Google Scholar

11. Cardone, F., Albertini, G., Bassani, D., Cherubini, G., Guerriero, E., Mignani, R., Monti, M., Petrucci, A., Ridolfi, F., Rosada, A., Rosetto, F., Sala, V., Santoro, E., Spera, G.: Nuclear metamorphosis in mercury. Int. J. Mod. Phys. B 29, 1550239 (2015).10.1142/S0217979215502392Search in Google Scholar

12. Cardone, F., Albertini, G., Bassani, D., Cherubini, G., Guerriero, E., Mignani, R., Monti, M., Petrucci, A., Ridolfi, F., Rosada, A., Rosetto, F., Sala, V., Santoro, E., Spera, G.: Deformed space-time transformations in mercury. Int. J. Mod. Phys. B 31, 1750168 (2017).10.1142/S0217979217501685Search in Google Scholar

13. Cardone, F., Albertini, G., Bassani, D., Cherubini, G., Guerriero, E., Mignani, R., Monti, M., Petrucci, A., Ridolfi, F., Rosada, A., Rosetto, F., Sala, V., Santoro, E., Spera, G.: Nuclear metamorphosis in mercury: the rare earths production. J. Condens. Matter Nucl. Sci. 27, 1 (2018).Search in Google Scholar

14. Cardone, F., Mignani, R., Petrucci, A.: Piezonuclear decay of thorium. Phys. Lett. A 373, 1956 (2009).10.1016/j.physleta.2009.03.067Search in Google Scholar

15. Esmeray, E., Aydin, M. E.: Comparison of natural radioactivity removal methods for drinking water supplies: a review. J. Int. Environ. Appl. Sci. 3(3), 142 (2008).Search in Google Scholar

16. Munter, R.: Technology for the removal of radionuclides from natural water and waste management: state of the art. P. Est. Acad. Sci. 62(2), 122 (2013).10.3176/proc.2013.2.06Search in Google Scholar

17. Huikuri, P., Salonen, L., Raff, O.: Removal of natural radionuclides from drinking water by POU reverse osmosis. Desalination 3(119), 235 (1998).10.1016/S0011-9164(98)00163-5Search in Google Scholar

18. Khannanov, A., Nekljudov, V. V., Gareev, B., Kiiamov, A., Tour, J. M, Dimiev, A. M.: Oxidatively modified carbon as efficient material for removing radionuclides from water. Carbon 115, 394 (2017).10.1016/j.carbon.2017.01.025Search in Google Scholar

19. Romanchuk, A. Y., Slesarev, A. S., Kalmykov, S. N., Kosynkin, D. V., Tour, J. M.: Graphene oxide for effective radionuclide removal. Phys. Chem. Chem. Phys. 15, 2321 (2013).10.1039/c2cp44593jSearch in Google Scholar PubMed

20. Abdel Rahman, R. O., Ibrahium, H. A., Hung, Y.-T.: Liquid radioactive wastes treatment: a review. Water 3, 551 (2011).10.3390/w3020551Search in Google Scholar

21. Shcheklein, S. E., Shastin, A. G., Domanskaya, I. K.: Prospects of the application of curable decontamination solutions in problems of impact improving of nuclear power plants. in “Energy Production and Management in the 21st Century”, Vol. 2 927: The Quest for Sustainable Energy Edited By: Brebbia C.A., Magaril E.R. and Khodorovsky M.Y., – WIT Transactions on Ecology and the Environment, WIT Press, Ashurst Lodge, UK (2014).10.2495/EQ140872Search in Google Scholar

22. Erma, V. A.: Electron effects on barrier penetration. Phys. Rev. 105(6), 1784 (1957).10.1103/PhysRev.105.1784Search in Google Scholar

23. Belloni, F.: Alpha decay in electron environments of increasing density: from the bare nucleus to compressed matter. Eur. Phys. J. A 52, 32 (2016).10.1140/epja/i2016-16032-3Search in Google Scholar

24. Kettnern, K. U., Becker, H. W., Strieder, F., Rolfs, C.: High-Z electron screening: the cases 50V(p,n)50Cr and 176Lu(p,n)176Hf. J. Phys. G: Nucl. Part. Phys. 32, 489 (2006).10.1088/0954-3899/32/4/007Search in Google Scholar

25. Jeppesen, H. B., Byskov-Nielsen, J., Wright, P., Correia, J. G., Fraile, L. M., Fynbo, H. O. U., Johnston, K., Riisager, K.: Alpha-decay half-life of 221Fr in different environments. Eur. Phys. J. A 32, 31 (2007).10.1140/epja/i2007-10011-9Search in Google Scholar

26. Fortak, K., Kunz, R., Gialanella, L., Becker, H.-W., Meijer, J., Strieder, F.: The 198Au β−half-life in the metal Au revisited. Eur. Phys. J. A 46, 161 (2010).10.1140/epja/i2010-11030-1Search in Google Scholar

27. Pöml, P., Belloni, F., D’Agata, E., Colineau, E., Morgenstern, A., Griveau, J.-C., Rondinella, V. V., Repnow, R., Nassisi, V., Benneker, P. B. J. M., Lapetite, J.-M., Himbert, J.: Comparison of the α-decay half-life of 210Po implanted in a copper matrix at 4.2 and 293 K. Phys. Rev. C 89, 024320 (2014).10.1103/PhysRevC.89.024320Search in Google Scholar

28. Albertini, G., Capotosto, R.: Deformed space-time reactions: towards nuclear metabarysis. J. Adv. Phys. 5, 84 (2016).10.1166/jap.2016.1240Search in Google Scholar

29. Cardone, F., Mignani, R.: Piezonuclear reactions and Lorentz invariance breakdown. Int. J. Mod. Phys. E 15, 911 (2006).10.1142/S0218301306004600Search in Google Scholar

30. International Atomic Energy Agency (IAEA) – Nuclear Data Section - https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.Search in Google Scholar

31. Petrucci, A., Rosada, A., Santoro, E.: Asymmetric neutron emissions from sonicated steel. Mod. Phys. Lett. B 29, 1550067 (2015).10.1142/S0217984915500670Search in Google Scholar

32. Cardone, F., Cherubini, G., Lammardo, M., Mignani, R., Petrucci, A., Rosada, A., Sala, V., Santoro, E.: Violation of local Lorentz invariance for deformed space-time neutron emission. Eur. Phys. J. Plus 130, 55 (2015).10.1140/epjp/i2015-15055-ySearch in Google Scholar

33. Petrucci, A., Rosada, A.: Ultrasonic neutron emissions. J. Adv. Phys. 5(1), 63 (2016).10.1166/jap.2016.1246Search in Google Scholar

34. Albertini, G., Bassani, D., Cardone, F.: Non-conventional effects induced by energy density in materials. An introduction to deformed space-time reactions. In: R. L. Amoroso, L. H. Kauffman, P. Rowlands and G. Albertini (Eds.), Unified Field Mechanics II: Formulations and Empirical Tests (2018), Proceedings of the 10th Symposium Honoring Noted French Mathematical Physicist Jean-Pierre Vigier, Porto Novo, Italy, 25–28 July 2016, World Scientific, Singapore, p. 51. DOI: http://www.worldscientific.com/worldscibooks/10.1142/10764#t=toc. DOI: https://doi.org/10.1142/9789813232044_0004.10.1142/9789813232044_0004Search in Google Scholar

35. Albertini, G., Calbucci, V., Cardone, F., Petrucci, A., Ridolfi, F.: Chemical changes induced by ultrasounds in iron. Appl. Phys. A 114, 1233 (2013).10.1007/s00339-013-7876-zSearch in Google Scholar

36. Metzler, F., Hagelstein, P., Lu, S.: Observation of non-exponential decay in X-ray and γ emission lines from Co-57. J. Condens. Matter Nucl. Sci. 27, 46 (2018).Search in Google Scholar

Received: 2018-06-24
Accepted: 2018-12-06
Published Online: 2019-01-06
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3009/html
Scroll to top button