Assessment of radioactivity from selected soil samples from Halfa Aljadida area, Sudan
-
Abd-Elmoniem A. Elzain
, Hajo Idriss
Abstract
In this research, the results of radon concentration, surface and mass exhalation rates, radium concentration, effective dose rate and the alpha index have been investigated in a number of 198 soil samples that have been collected from various residential locations of Halfa Aljadida area, Sudan. The can technique, containing CR-39 have been used. From our results, the average value of soil gas radon concentration was found to be 1.96±0.22 kBq·m−3. The average values of surface and mass exhalation rates were 1.73±0.19 Bq·m−2·h−1 and 34.79±3.87 mBq·kg−1·h−1, respectively. The radium concentration average value was 8.06±0.90 Bq·kg−1. While the average value of the effective dose rate was recorded to be 54.69±6.11 mSv·y−1. The average value of alpha index of studied samples was (4.03±0.45)×10−2. From the study, a good positive and linear correlation between radium concentration, surface and mass exhalation rates of soil samples were present. In addition to that, a positive and linear correlation between radium and radon concentrations was found. Finally, a comparison between the results and other findings was conducted and the results imply the fact that the area under consideration is safe as if the health hazard are mentioned.
Acknowledgements
The authors are happy to pass their acknowledgments to the residents of the study area of Halfa Aljadida area for their helps and patient through the whole period of the study.
References
1. Malanca, A., Gaidolfi, L., Pessina, V., Dallara, G.: Distribution of 226Ra, 232Th and 40K in soils of Rio Grandedo Norte, Brazil. J. Environ. Radioact. 30, 55 (1996).10.1016/0265-931X(95)00035-9Search in Google Scholar
2. Report to the General Assembly, with Scientific Annexes, United Nations Scientific Committee on the Effects of Atomic Radiations, and effects of ionizing radiation (UNSCEAR), United Nations, New York (1993).Search in Google Scholar
3. Elzain, A.-E. A., Mohammed, Y. Sh., Mohammed, Kh. Sh., Sumaia, S. M.: Radium and radon exhalation studies in some soil samples from Singa and Rabak towns, Sudan using CR-39, Int. J. Sci. Res. 3(11), 632 (2014).Search in Google Scholar
4. Elzain, A.-E. A.: Estimation of soil gas radon concentration and the effective dose rate by using SSNTDs. IJSRP 5(2), 3887 (2015).Search in Google Scholar
5. Korany, K. A., El Nnagdy, M. S., Hassan, S. F., Shata, A.: Study of radiation hazards indices and radon exhalation rate in soil samples from Wadi Naseib Area, Sinai, Egypt. IJARPS 4, 7 (2014).Search in Google Scholar
6. Elzain, A.-E. A.: Assessment of indoor radon doses received by the students and staff in schools in some towns in Sudan. Int. J. Sci. Res. 4 (1), 2566 (2015).Search in Google Scholar
7. Elzain, A.-E. A.: A Study of indoor radon levels and radon effective dose in dwellings of some cities of Gezira State in Sudan. Nucl. Technol. Radiat. 29(4), 307 (2014).10.2298/NTRP1404307ESearch in Google Scholar
8. Idriss, H., Salih, I., Abdulaziz, S. A., Abdelgali, M. Y., Salih A. S., Amna, M. H., Mohammed, A. E., Mustafa, M. O. A.: Study of radon in soil gas, trace elements and climatic parameters around South Kordofan state, Sudan. Environ. Earth. Sci. 72(2), 335 (2014).10.1007/s12665-013-2954-2Search in Google Scholar
9. Farid, S. M.: Indoor radon in dwellings of Jeddah City, Saudi Arabia and its correlations with the radium and radon exhalation rates from soil. Indoor Built Environ. 25(1), 269 (2016).10.1177/1420326X14536749Search in Google Scholar
10. Elzain, A.-E. A.: Radon exhalation rates from some building materials used in Sudan. Indoor. Built. Environ. 24(6), 852 (2015).10.1177/1420326X14537285Search in Google Scholar
11. Matiullah, S. R., Ghauri, B.: Effect of moisture on the radon exhalation rate from soil, sand and brick samples collected from NWFP and FATA, Pakistan. Radiat. Prot. Dosimetry 130(2), 172 (2008).10.1093/rpd/ncm491Search in Google Scholar PubMed
12. Bavarnegin, E., Fathabadi, N., Vahabi Moghaddam, M., Vasheghani Farahani, M., Moradi, M., Babakhni, A.: Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar. Iran. J. Environ Radioact. 117, 36 (2013).10.1016/j.jenvrad.2011.12.022Search in Google Scholar PubMed
13. Abd El-Zaher, M.: A comparative study of the indoor radon level with the radon exhalation rate from soil in Alexandria city. Radiat. Prot. Dosimetry 154(4), 490 (2013).10.1093/rpd/ncs267Search in Google Scholar PubMed
14. Khan, M. S., Naqvi, A. H., Azam, A., Srivastava, D. S.: Radium and radon exhalation studies of soil. Iran J. Radiat. Res. 8(4), 207 (2011).Search in Google Scholar
15. Mehra, R., Singh, S., Singh, K.: A Study of uranium, radium, radon exhalation rate and indoor radon in the environs of some areas of the Malwa Region, Punjab. Indoor. Built. Environ. 15, 499 (2006).10.1177/1420326X06069053Search in Google Scholar
16. Elzain, A.-E. A.: Determination of soil gas radon concentration from some locations of Gedarif town, Sudan by using CR-39. Nucl. Technol. Radiat. 32(1), 85 (2017).10.2298/NTRP1701085ESearch in Google Scholar
17. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Effects of Ionizing Radiation, vol. I, Annex A: Dose Assessment Methodologies, New York (2000).Search in Google Scholar
18. Patra, A. C., Mohapatra, S., Sahoo, S. K., Lenka, P., Dubey, J. S., Thakur, V. K., Kumar, A. V., Ravi, P. M., Tripathi, R. M.: Assessment of ingestion dose due to radioactivity in selected food matrices and water near Vizag, India. Radio. Anal. Nucl. Chem. 300, 903 (2014).10.1007/s10967-014-3097-ySearch in Google Scholar
19. Wilkening, M. H., Clements, W. E., Stanley, D.: Radon-222 flux measurements in widely separated regions. In: J. A. S. Adams, W. M. Lowder, T. F. Gesell (Eds.), In the Natural Radiation Environment II, New Mexico Institute of Mining and Technology, Socorro, USA (1972), vol. II. CONF-720805-P2, II, p. 717.Search in Google Scholar
20. Elzain, A.-E. A.: Seasonal variation of radon-222 concentration in shops and pharmacies of Alzarqa town-Jordan. In Proceedings of the 2011 International AASRT Symposium, Orlando, Florida, USA, vol. 2 (2011), p. 38.Search in Google Scholar
21. Al-Bataina, B., Elzain, A.-E. A.: Seasonal variation of indoor radon-222 concentration levels in Zarqa City, Jordan. Abhath Al-Yarmouk. Basic Sci. Eng. 12(1), 191 (2003).Search in Google Scholar
22. Elzain, A.-E. A., Sam, A. K., Mukhtar, O. M., Abbasher, M. A.: A Survey of indoor radon – 222 concentration measurements in Kassala town. Gezira. J. Eng. Appl. Sci. 3(2), 72 (2008).Search in Google Scholar
23. Elzain, A.-E. A., Sam, A. K.: Sudan report to the third co-ordination meeting of the project on: measurement of indoor radon concentration in some cities in Arab countries. Arab Atomic Energy Agency-Egyptian Atomic Energy Agency-Egypt-Cairo. 22–23, November, 2005.Search in Google Scholar
24. Elzain, A.-E. A.: Indoor radon-222 concentrations in some cities in Kassala state, eastern Sudan. In Proceedings of the 2011 International AASRT Symposium, Orlando, Florida, USA, vol. 2 (2011), p. 71.Search in Google Scholar
25. Elzain, A.-E. A., Mohammed, Y. Sh., Mohamed, Kh. Sh., Mohamed-Ali, A. M.: A study of radium concentration and radon exhalation rate in soil samples from Kassala Town, Sudan using SSNTDs. Am. J. Phys. Appl. 4(4), 84 (2016).10.11648/j.ajpa.20160404.11Search in Google Scholar
26. Elzain, A.-E. A., Sam, A. K., Mukhtar, O. M., Abbasher, M. A.: Measurements of radon gas concentration in a soil at some towns in Kassala State. Gezira J. Eng. Appl. Sci. 4(1) 15 (2009).Search in Google Scholar
27. Elzain, A.-E. A.: A study on the radon concentrations in drinking water in Kassala State (Eastern Sudan) and the associated health effects. World Appl. Sci. J. 31(3), 367 (2014).Search in Google Scholar
28. Elzain, A.-E. A.: Measurement of radon-222 concentration levels in water samples in Sudan. Adv. Appl. Sci. Res. 5(2), 229 (2014).Search in Google Scholar
29. Fadull, H. M., Salih, A. A., Ali, I. A., Lnanagaz, S.: Use of remote sensing to map gully erosion along Atbara River. Sudan JAGl 1(314), 1 (1999).10.1016/S0303-2434(99)85010-7Search in Google Scholar
30. Ibrahim, K. E., Hussein, M. T., Giddo, I. M.: Application of combined geophysical and hydrogeological techniques to ground water exploration: a case study of Showak-Wad Elhelew area. J. Afr. Earth Sci. 1, 1 (1992).10.1016/0899-5362(92)90002-TSearch in Google Scholar
31. Kheiralla, K. M., Salma, E. E., Al-Imam, O. A. O., Elzien, S. M.: Geology and geophysical conditions of land platform (Karab) using resistivity imaging and seismic refraction survey, Fashaga Area-Gadaref State, Sudan. Am. J. Earth Sci. 2(6), 164 (2015).Search in Google Scholar
32. Eltom, A., Elsheikh, M., Nayl, K. E. A., Elsayed Zeinelabdein, K. A., Babikir, I. A. A.: Groundwater potentialities assessment of the River Atbara alluvial sediments El Girba-New Halfa Area, Eastern Sudan. Am. J. Sci. Technol. 1(4), 187 (2014).Search in Google Scholar
33. Alter, H. W., Price, P. B.: Radon detection using track registration material. US Patent, 3, 665, 194 Terradex Corp (1972).Search in Google Scholar
34. Somogyi, G.: The environmental behavior of radium, Technical Reports Series No. 310, vol. 1. IAEA, Vienna, 1990, p. 229.Search in Google Scholar
35. Abu-Jarad, F.: Application of nuclear track etch detector for radon related measurements. Nucl. Track Radiat. Meas. J. 15(1), 525 (1988).10.1016/1359-0189(88)90195-1Search in Google Scholar
36. Hesham A. Y., Embaby, A. A., El-Farrash, A. H., Laken, H. A.: Radon exhalation rate in surface soil of Graduate’s villages in west Nile delta, Egypt, using can technique. Int. J. Recent. Sci. Res. 6(4), 3440 (2015).Search in Google Scholar
37. Somogyi, G., Hafez, A.-F., Hunyadi, I., Tóth-Szilágyi, M.: Measurement of exhalation and diffusion parameters of radon in solids by plastic track detectors. Nucl. Tracks Radiat. Meas. 12(1–6), 701 (1986).10.1016/1359-0189(86)90683-7Search in Google Scholar
38. Abd El-Zaher, M.: An overview on studying 222Rn exhalation rate using passive technique solid state nuclear track detector. Am. J. Appl. Sci. 9(10), 1653 (2012).10.3844/ajassp.2012.1653.1659Search in Google Scholar
39. Shoeib, M. Y., Thabayneh, K. M.: Assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials. Radiat. Res. Appl. Sci. 7, 174 (2014).10.1016/j.jrras.2014.01.004Search in Google Scholar
40. Elzain, A.-E. A.: Determination of radium concentration and radon exhalation rate in soil samples using CR-39. Adv. Appl. Sci. Res. 6(2), 96 (2015).Search in Google Scholar
41. International Commission on Radiological Protection (ICRP), Lung cancer risk from indoor exposures to radon daughters, A report of a task group of the ICRP Publication 50, Pergamon Press, Oxford (1987).Search in Google Scholar
42. Nabil, M. H., Samar, F.: Evaluation of radiological hazards associated with the uses of marble and ceramic as decorative building materials in Egypt. J. Radioanal. Nucl. Chem. 310(3), 1373 (2016).10.1007/s10967-016-4995-ySearch in Google Scholar
43. Beretka, J., Mathew, P. J.: Natural radioactivity of Australian building materials, industrial wastes and by products. Health Phys. 48(48), 87 (1985).10.1097/00004032-198501000-00007Search in Google Scholar PubMed
44. Naturally occurring radiation in the Nordic countries-recommendations, Nordic, The Flag-Book Series, the Radiation Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden (2000).Search in Google Scholar
45. European Commission (EC), Radiological protection principles concerning the natural radioactivity of building materials. Radiation Protection 112, Directorate General Environment. Nuclear Safety and Civil Protection, European Commission (1999).Search in Google Scholar
46. El-Taher, A.: Measurement of radon concentrations and their annual effective dose exposure in groundwater from Qassim Area, Saudi Arabia. J. Environ. Sci. Technol. 5, 475 (2012).10.3923/jest.2012.475.481Search in Google Scholar
47. Shweikani, R., Giaddui, T. G., Durrani, S.: The effect of soil parameters on the radon concentration values in the environment. Radiat. Meas. 25(1–4), 581 (1995).10.1016/1350-4487(95)00188-KSearch in Google Scholar
48. Narayan, Dass, G. R., Parthasarathy, T. N., Taneja, P. C., Perumal, N. V. A. S.: Geology structure and uranium mineralization in Kulu Himalayas, Himachal Pradesh. J. Geol. Soc. India 20, 95 (1979).Search in Google Scholar
49. Kaul, R., Umamaheswar, K., Chandrasekaran, S., Swarnkar, B. M.: Uranium mineralization in Siwaliks of NorthWestern Himalaya, India. J. Geol. Soc. India 41, 243 (1993).Search in Google Scholar
50. Alshahri, F., Alqahtani, M.: Radon concentrations and effective radium contents in Local and Imported Phosphate Fertilizers, Saudi Arabia. Arab J. Sci. Eng. 40, 2095 (2015).10.1007/s13369-015-1688-8Search in Google Scholar
51. Choubey, V. M., Mukherjee, P. K., Bajwa, B. S., Vivek Walia: Geological and tectonic influence on water-soil-radon relationship in Mandi-Manali area, Himachal Himalaya. Environ. Geol. 52, 1163 (2007).10.1007/s00254-006-0553-1Search in Google Scholar
52. Jönsson, G., Baixeras, C., Devantier, R., Enge, W., Font, L. l., Freyer, K., Ghose, R., Treutler, H.-C.: Soil radon levels and measured with SSNTD’s and the soil radium content. Radiat. Meas. 31, 291 (1999).10.1016/S1350-4487(99)00128-6Search in Google Scholar
53. Mujahid, S. A., Hussain, S., Ramzan, M.: Measurement of radon exhalation rate and soil gas radon concentration in areas of southern Punjab, Pakistan. Radiat. Prot. Dosim. 140(3), 300 (2010).10.1093/rpd/ncq119Search in Google Scholar
54. Sharma, D. K., Kumar, A., Kumar, M., Singh, S.: Study of uranium, radium and radon exhalation rate in soil samples from some areas of Kangra district, Himachal Pradesh, India using solid-state nuclear track detectors. Radiat. Meas. 36(1–6), 363 (2003).10.1016/S1350-4487(03)00152-5Search in Google Scholar
55. Wang, N., Xiao, L., Li, C., Mei, W., Hang, Y., Liu, D.: Level of radon exhalation rate from soil in some sedimentary and granite areas in China. J. Nucl. Sci. Technol. 46(3), 303 (2009).10.1080/18811248.2007.9711534Search in Google Scholar
56. Harb, S., Ahmed, N. K., Elnobi, S.: Radon exhalation rate and Radionuclides in soil, phosphate, and building materials. IOSR-JAP 7(2I), 41 (2015).Search in Google Scholar
57. Welelaw, S., Bhardwaj, M. K.: Assessment of hazards due to radon’s mass and surface exhalation rates; and radium content in soil samples of Lalibela, Ethiopia. Int. Eng. Manag. Sci. 4(4), 445 (2013).Search in Google Scholar
58. Mahur, A. K., Gupta, M., Varshney, R., Sonkawade, R. G., Verma, K. D.: Radon exhalation and gamma radioactivity levels in soil and radiation hazard assessment in the surrounding area of National Thermal Power Corporation, Dadri (U.P.), India. Radiat. Meas. 50, 130 (2013).10.1016/j.radmeas.2012.09.008Search in Google Scholar
59. Singh, B. P., Pandit, B., Bhardwaj, V. N., Singh, P., Kumar, R.: A study of radium and radon exhalation rate in some solid samples using solid state nuclear track detectors. Indian J. Pure Appl. Phys. 48(7), 493 (2010).Search in Google Scholar
60. Choudhary, A. K.: Measurement of radon activity and exhalation rate in soil samples from Banda district, India. Radiat. Prot. Environ. 37(3), 161 (2014).10.4103/0972-0464.154877Search in Google Scholar
61. Sannappa, J., Venkataramaiah, P.: Study of radon exhalation in soil and air concentrations at Mysore. Indian J. Phys. B. 73B(4), 629 (1999).Search in Google Scholar
62. Maibam, D., Sharma, Y., Dewsaw, A. K., Kenye, A., Walia, D., Saxena, A.: Assessment of soil-radium content, indoor radon activity and the associated radiation risks in Kohima town, Nagland. J. Appl. Fund. Sci. 1(1), 130 (2015).Search in Google Scholar
63. Jaber, M. Q., Subber, A. R. H., Al-Hashimi, N. H. N.: Radon concentrations in the marine sediments of Khor-Abdulla Northern West of the Arabian Gulf. Int. J. Phys. 3(6), 239 (2015).Search in Google Scholar
64. Asaad, H. I., Mohamad, S. J.: Hazards assessment of radon exhalation rate and radium content in the soil samples in Iraqi Kurdistan using passive and active detecting methods. World Academy Sci, Eng. and Tech. Inter. J. of Enviro. Chem. Ecolo. Geolo. and Geophys. Eng. 4(10), 473 (2010).Search in Google Scholar
65. Kikaj, D., Jeran, Z., Bahtijari, M., Stegnar, P.: Radon in soil gas in Kosovo. J. Environ. Radioact. 164, 245 (2016).10.1016/j.jenvrad.2016.07.037Search in Google Scholar PubMed
66. Zunic, Z. S., Kozak, K., Ciotoli, G., Ramola, R. C., Kochowska, E., Ujić, P., Celiković, I., Mazur, J., Janik, M., Demajo, A., Birovljev, A., Bochicchio, F., Yarmoshenko, I. V., Kryeziu, D., Olko, P.: A campaign of discrete radon concentration measurements in soil of Niška Banja town, Serbia. Radiat. Meas. 42(10), 1696 (2007).10.1016/j.radmeas.2007.06.010Search in Google Scholar
67. Amin, R. M.: A study of radon emitted from building materials using solid state nuclear track detectors. J. Radiat. Res. Appl. Sci. 8(4), 516 (2015).10.1016/j.jrras.2015.06.001Search in Google Scholar
68. Albarracín, D., Font, L. I., Amgarou, K., Domingo, C., Frenández, F., Baixeras, C.: Effect of soil parameters on radon entry into a building by a means of the TRANSRAD numerical model. Radiat. Prot. Dosim. 102(4), 359 (2002).10.1093/oxfordjournals.rpd.a006106Search in Google Scholar PubMed
69. Vaupotic, J., Gregoric, A., Kozak, K., Mazur, J., Kochowska, E., Grzadziel, D.: Radon potential of a fly ash pile – a criterion for its use as a building lot. RMZ. Mater. Geoenviron. 57(4), 501 (2010).Search in Google Scholar
70. Saad, A. F., Abdallah, R. M., Hussein, N. A.: Radon exhalation from Libyan soil samples measured with the SSNTD technique. Appl. Radiat. Isot. 72, 163 (2013).10.1016/j.apradiso.2012.11.006Search in Google Scholar PubMed
71. Singh, S., Kumar, D. S., Dhar, S., Kumar, A., Kumar, A.: Uranium and radon measurements in the environs of Himachal Himalayas – an application of solid state nuclear track detectors. Proceedings of the XIth National Symposium SSNTD, Guru Nanak Dev University Press, Amritsar, India (1998), p. 69.Search in Google Scholar
72. Alshahri, F.: Measurement of 222Rn concentration and exhalation rate from phosphate rocks using SSBD detector in Saudi Arabia. Arab. J. Sci. Eng. 39, 5765 (2014).10.1007/s13369-014-1108-5Search in Google Scholar
73. Jasaitis, D., Girgždys, A.: Natural radionuclide distribution and radon exhalation rate from the soil in Vilnius city. J. Environ. Eng. Lands. Manag. 15(1), 31 (2007).10.3846/16486897.2007.9636905Search in Google Scholar
74. Butkus, D., Gagiškis, A., Streckytė, E., Grubliauskas, R.: The measuring of radon volumetric activity and exhalation rate in ground-level air. J. Radioanal. Nucl. Chem. 295, 1085 (2013).10.1007/s10967-012-1922-8Search in Google Scholar
75. Yousef, H., Gehad, M. S., Ali Hassan El-Farrash, A. H., Hamza, A.: Radon exhalation rate for phosphate rocks samples using alpha track detectors. J. Radiat. Res. Appl. Sci. 9, 41 (2016).10.1016/j.jrras.2015.09.002Search in Google Scholar
76. Elzain, A.-E. A.: Measurements of indoor radon levels and dose estimation and lung cancer risk determination for workers in health centres of some towns in the Sudan. Am. J. Mod. Phys. 5(4), 51 (2016).10.11648/j.ajmp.20160504.12Search in Google Scholar
77. Simon, S. L., Ibrahim, S. A.: Biological Uptake of Radium by Terrestrial Plants, in: The Environmental Behaviour of Radium. Technical Report Series, Chapter 5–6, IAEA, Vienna (1990), p. 545–599.Search in Google Scholar
78. NEA-OECD, Organization for Economic Cooperation and Development. In: Exposure to radiation from natural radioactivity in building materials. Report by a group of Experts of the OECD Nuclear Energy Agency, OECD, Paris, France (1979), pp. 1–34.Search in Google Scholar
79. Narayana, Y., Somashekarappa, H. M., Karunakara, N., Avadhani, D. N., Mahesh, H. M., Siddappa, K.: Natural radioactivity in the soil samples of costal coastal Karnataka of south India. Health Phys. 80, 1, 24 (2001).10.1097/00004032-200101000-00006Search in Google Scholar
80. Singh S., Rani, A., Mahajan, R. K.: 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat. Meas. 39(4), 431 (2005).10.1016/j.radmeas.2004.09.003Search in Google Scholar
81. Matiullah, S. R., Ahad, A., Ur Rehman, S., Ur Rehman, S., Faheem, M.: Measurement of radioactivity in the soil of Bahawalpur division, Pakistan. Radiat. Prot. Dosim. 112(3), 443 (2004).10.1093/rpd/nch409Search in Google Scholar
82. Mantazul, I. C., Alam, M. N., Hazari, S. K. S.: Distribution of radionuclides in the river sediment and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard. Appl. Radiat. Isot. 51, 747 (1999).10.1016/S0969-8043(99)00098-6Search in Google Scholar
83. Karahan, G.: Risk assessment of baseline outdoor gamma dose rate levels study of natural radiation sources in Bursa, Turkey. Radiat. Prot. Dosim. 142(2–4), 324 (2010).10.1093/rpd/ncq217Search in Google Scholar PubMed
84. Nageswara Rao, M. V., Bhati, S. S., Rama Seshu, P., Reddy, A. R.: Natural radioactivity in soil and radiation levels of Rajasthan. Radiat. Protect. Dosim. 63(3), 207 (1996).10.1093/oxfordjournals.rpd.a031531Search in Google Scholar
85. Gillmore, G. K., Crockett, R. G. M., Denman, A. R., Flowers, A., Harris, R.: Radium dial watches, a potentially hazardous legacy? Environ. Int. 45, 91 (2012).10.1016/j.envint.2012.03.013Search in Google Scholar
86. Mittal, S., Bhatti, S. S., Jodha, A. S., Kumar, S., Ramachandran, T. V., Nambi, K. S. V.: A correlation study between radon in dwelling and radium concentration in soil. Proceedings XI National Symposium SSNTD, Solid State Nuclear Track Detectors and Applications, Guru Nanak Dev University Press, Amritsar, India (1988), p. 268.Search in Google Scholar
87. National Research Council, Health risks of radon and other internally deposited alpha-emitters. Committee on Health Risks of Exposure to Radon: BEIR VI, National Academy Press, Washington, DC (1988).Search in Google Scholar
88. Evans, R. D.: The effect of skeletally deposited alpha-ray emitters in man. Br. J. Radiol. 39, 881 (1966).10.1259/0007-1285-39-468-881Search in Google Scholar PubMed
89. Harvie, D. I.: Deadly Sunshine: The History and Fatal Legacy of Radium (2005), Tempus, Stroud, UK.Search in Google Scholar
90. NCRP, National Council on Radiation Protection and Measurements, Radiation exposure from consumer products and miscellaneous sources. NCRP Report 56, Washington D.C., USA (1977).Search in Google Scholar
91. Stehney, A. H.: Health studies of U.S. women radium dial workers. In: J. P. Young, R. S. Yalow (Eds.), Radiation and Public Perception. Benefits and Risks, 243. American Chemical Society Advances in Chemistry (1995), Washington D.C., USA, p. 169.10.1021/ba-1995-0243.ch014Search in Google Scholar
92. Srilatha, M. C., Rangaswamy, D. R., Sannappa, J.: Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India. J. Radioanal. Nucl. Chem. 303, 993 (2015).10.1007/s10967-014-3584-1Search in Google Scholar
93. Kakatia, R. K., Kakatib, L., Ramachandranc, T. V.: Measurement of uranium, radium and radon exhalation rate of soil samples from Karbi Anglong district of Assam, India using EDXRF and can technique method. APCBEE Procedia. 5, 186 (2013).10.1016/j.apcbee.2013.05.033Search in Google Scholar
94. Kuş, A., Yakut, H., Tabar, E.: Radon exhalation rates and effective radium contents of the soil samples in Adapazarı. Istanbul, Turkey, AIP Conf. Proc. 1722(1), 030009 (2015).10.1063/1.4944132Search in Google Scholar
95. Noureddine, A., Baggoura, B., Hocini, N., Boulahdid, M.: Uptake of radioactivity by marine surface sediments collected in Ghazaouet, West Coast of Algeria. Appl. Radiat. Isot. 49, 1745 (1998).10.1016/S0969-8043(97)10117-8Search in Google Scholar
96. Deworn, J. P., Slegers, W., Gillard, J., Flemal, J. M., Culst, J. P.: Survey of the natural radiation of Belgium territory as determined by different methods. Radiat. Prot. Dosim. 24(1–4), 347 (1988).10.1093/oxfordjournals.rpd.a080300Search in Google Scholar
97. Strezov, A., Milanov, M., Mishev, P., Stoilova, T.: Radionuclide accumulation in near-shore sediments along the Bulgarian Black Sea Coast. Appl. Radiat. Isot. 49, 1721 (1998).10.1016/S0969-8043(97)10147-6Search in Google Scholar PubMed
98. Ngachin, M., Garavaglia, M., Giovani, C., Kwato Njock, M. G., Nourreddine, A.: Radioactivity level and soil radon measurement of a volcanic area in Cameroon. J. Environ. Radioact. 99(7), 1056 (2008).10.1016/j.jenvrad.2007.12.022Search in Google Scholar PubMed
99. Kiss, J. J., de Jong, E., Bettany, J. R.: The distribution of natural radionuclides in native soils of Southern Saskatchewan, Canada. J. Environ. Qual. 17, 437 (1988).10.2134/jeq1988.00472425001700030016xSearch in Google Scholar
100. National Environmental Protection Agency. Nationwide survey of environmental radioactivity level in China (1983–1990). 90-S315-206. The People’s Republic of China (1990).Search in Google Scholar
101. Tzortzis, M., Tsertos, H.: Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. J Environ. Radioact. 77(3), 325 (2004).10.1016/j.jenvrad.2004.03.014Search in Google Scholar PubMed
102. Anagnostakis, M. J., Hinis, E. P., Simopoulos, S. E., Angelopoulos, M. G.: Natural radioactivity mapping of Greek surface soils. Environ. Int. 22(1), 3 (1996).10.1016/S0160-4120(96)00085-2Search in Google Scholar
103. Prasad, Y., Prasad, G., Gusain, G. S., Choubey, V. M., Ramola, R. C.: Radon exhalation rate from soil samples of South Kumaun Lesser Himalayas, India. Radiat. Meas. 43(1), S369 (2008).10.1016/j.radmeas.2008.04.056Search in Google Scholar
104. Syarbaini, S., Pudjadi, E.: Radon and thoron exhalation rates from surface soil of Bangka – Belitung Islands, Indonesia. Indonesian J. Geosci. 2(1), 35 (2015).10.17014/ijog.2.1.35-42Search in Google Scholar
105. Dawood, H. I.: Measurement of radioactivity for radium226 isotopes in some soil samples from different regions in Karbala Governorate using gamma ray spectrometry. J. Babylon Univ./Pure Appl. Sci. 2(19), 562 (2011).Search in Google Scholar
106. McAulay, I. R., Morgan, D.: Natural radioactivity in soil in the Republic of Ireland. Radiat. Prot. Dosimetry 24(1–4), 47 (1988).10.1093/oxfordjournals.rpd.a080239Search in Google Scholar
107. Buttaglia, A., Bramati, L.: Environmental radiation survey around a coal-fired power plant site. Radiat. Prot. Dosim. 24(1–4), 407 (1988).10.1093/oxfordjournals.rpd.a080313Search in Google Scholar
108. Megumi, K., Oka, T., Doi, M., Kimura, S., Tsujimoto, T., Ishiyama, T., Katsurayama, K.: Relationship between the concentrations of natural radionuclides and mineral composition of the surface soil. Radiat. Prot. Dosim. 24, 69 (1998).10.1093/rpd/24.1-4.69Search in Google Scholar
109. Al-Jundi, J., Al-Bataina, B. A., Abu-Rukah, Y., Shehadeh, H. M.: Natural radioactivity concentrations in soil samples along the Amman Aqaba Highway, Jordan. Radiat. Meas. 36(1–6), 555 (2003).10.1016/S1350-4487(03)00202-6Search in Google Scholar
110. Saad, H. R., Al-Azmi, D.: Radioactivity concentrations in sediments and their correlation to the coastal structure in Kuwait. Appl. Radiat. Isot. 56(6), 991 (2002).10.1016/S0969-8043(02)00061-1Search in Google Scholar PubMed
111. Al.-Zamel, A. Z., Bou-Rabee, F., Olszewski, M., Bem, H.: Natural radionuclides and 137Cs activity concentration in the bottom sediment cores from Kuwait Bay. J. Radioanal. Nucl. Chem. 266(2), 269 (2005).10.1007/s10967-005-0903-6Search in Google Scholar
112. Mireles, F., Dávila, J. I., Quirino, L. L., Lugo, J. F., Pinedo, J. L., Ríos, C.: Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico. Health Phys. 84(3), 368 (2003).10.1097/00004032-200303000-00010Search in Google Scholar PubMed
113. Agbalagba, E. O., Avwiri, G. O., Chad-Umoreh, Y. E.: γ-Spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria. J. Environ. Radioac. 109, 64 (2012).10.1016/j.jenvrad.2011.10.012Search in Google Scholar PubMed
114. Stranden, E., Strand, T.: Radon in an alum shale rich Norwegian area. Radiat. Prot. Dosim. 24(1–4), 367 (1988).10.1093/oxfordjournals.rpd.a080304Search in Google Scholar
115. Zare, M. R., Mostajaboddavati, M., Kamali, M., Abdi, M. R., Mortazavi, M. S.: 235U, 238U, 232Th, 40K and 137Cs activity concentrations in marine sediments along the northern coast of Oman sea using high-resolution gamma-ray spectrometry. Mar. Pollut. Bull. 64(9), 1956 (2012).10.1016/j.marpolbul.2012.05.005Search in Google Scholar PubMed
116. Akhtar, N., Tufail, M., Ashraf, M., Mohsin, A., Iqbal, M.: Measurement of environment radioactivity for estimation of radon exposure from saline soil of Lahore. Pakistan. Radiat. Meas. 39(1), 11 (2005).10.1016/j.radmeas.2004.02.016Search in Google Scholar
117. Al-Qaradawi, I., Abdel-Moati, M., Al-Yafei, M. A-A., Al-Ansari, E., Al-Maslamani, I., Holm, E., Al-Shaikh, I., Mauring, A., Pinto, P. V., Abdulmalik, D., Amir, A., Miller, M., Yigiterhan, O., Persson, B. R.: Radioactivity levels in the marine environment along the Exclusive Economic Zone (EEZ) of Qatar. Mar. Pollut. Bull. 90(1–2), 323 (2015).10.1016/j.marpolbul.2014.10.021Search in Google Scholar PubMed
118. Al-Trabulsy, H. A., Khater, A. E. M., Habbani, F. I.: Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Radiat. Phys. Chem. 80, 343 (2011).10.1016/j.radphyschem.2010.09.002Search in Google Scholar
119. Huy, N. Q., Luyen, T. V.: Study on external exposure doses from terrestrial radioactivity in southern Vietnam. Radiat. Prot. Dosimetry 118(3), 331 (2006).10.1093/rpd/nci341Search in Google Scholar
120. Baeza, A., del Río, M., Miró, C., Paniagua, J. M.: Natural radioactivity in soils of the province of Cáceres (Spain). Radiat. Prot. Dosimetry. 45(1–4), 261 (1992).10.1093/rpd/45.1-4.261Search in Google Scholar
121. Quindós, L. S., Fernández, P. L., Soto, J., Ródenas, C., Gómez, J.: Natural radioactivity in Spanish soils. Health Phys. 66(2), 194 (1994).10.1097/00004032-199402000-00010Search in Google Scholar PubMed
122. Weng, P.-S.: Distribution of naturally occurring radionuclides in the mountainous areas in Taiwan. The Natural Radiation Environment IV, Environ. Int. 22(Suppl 1), 49 (1996).10.1016/S0160-4120(96)00088-8Search in Google Scholar
123. Smith, K. A., Watson, P. G.: Rep. ARCRL-12, Radiobiological Laboratory, Agricultural Research Council, Wantage, UK (1964).Search in Google Scholar
124. Myrick, T. E., Berven, B. A., Haywood, F. F.: Determination of concentrations of selected radionuclides in surface soil in the U.S. Health Phys. 45(3), 631 (1983).10.1097/00004032-198309000-00006Search in Google Scholar PubMed
125. Rani, A., Mittal, S., Mehra, R., Ramola, R. C.: Assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India. Appl. Radiat. Isot. 101, 122 (2015).10.1016/j.apradiso.2015.04.003Search in Google Scholar PubMed
126. Singh, S., Kumar, A., Singh, B.: Radon level in dwellings and its correlation with uranium and radium content in some areas of Himachal Pradesh, India. Environ. Int. 28(1–2), 97 (2002).10.1016/S0160-4120(02)00012-0Search in Google Scholar PubMed
127. Singh, S., Kumar, M., Mahajan, R. K.: The study of indoor radon in dwellings of Bathinda district, Punjab, India and its correlation with uranium and radon exhalation rate in soil. Radiat. Meas. 39(5), 536 (2005).10.1016/j.radmeas.2004.10.008Search in Google Scholar
128. Mehra, R., Singh, S., Singh, K.: Analysis of 226Ra, 232Th and 40K in soil samples for the assessment of the average effective dose. Indian J. Phy. 83(7), 1031 (2009).10.1007/s12648-009-0064-5Search in Google Scholar
129. International Commission on Radiological Protection, (ICRP) The Recommendations of the International Commission on Radiological Protection. www.icrp.org/ICRP. Accessed 26 March 2014, ICRP Publication, No 103. Ann. ICRP 37(2–4)-F (2007).Search in Google Scholar
130. Mittal, S., Rani, A., Mehra, R.: Radon levels in drinking water and soil samples of Jodhpur and Nagaur districts of Rajasthan, India. Appl. Radiat. Isot. 113, 53 (2016).10.1016/j.apradiso.2016.04.017Search in Google Scholar PubMed
131. López-Abente, G., Vidal-Ocabo, E., Tello-Anchuela, O., Aragonés, N., García-Pérez, J., Pastor-Barriuso, R., Pérez-Gómez, B., Jiménez, M. A., Martín-Valdepeñas, J. M., García-Talavera, M., Ramos, L., Pollán, M.: Exposure to ionizing radiations arising from the operation of nuclear installations and cancer mortality. Int. J. Environ. Sci. Technol. 11(1), 97 (2014).10.1007/s13762-013-0223-2Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging
- Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent
- DST-deactivation of nickel-63 nitrate
- Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin
- Assessment of radioactivity from selected soil samples from Halfa Aljadida area, Sudan
- In situ measurement of terrestrial gamma dose rates in eastern region of Peninsular Malaysia and its relation to geological formation and soil types
- Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system
- Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties
Articles in the same Issue
- Frontmatter
- A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging
- Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent
- DST-deactivation of nickel-63 nitrate
- Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin
- Assessment of radioactivity from selected soil samples from Halfa Aljadida area, Sudan
- In situ measurement of terrestrial gamma dose rates in eastern region of Peninsular Malaysia and its relation to geological formation and soil types
- Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system
- Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties