Abstract
A novel high-dose dosimeter based on γ radiation reduction of copper ions and formation of copper metal inside polymer matrix were investigated. γ radiation induced synthesis of copper nanoparticles (CuNPs) in poly vinyl alcohol films were studied by UV-Visible Spectrophotometer, X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The optical absorption spectra showed that the Cu/PVA nanocomposite films have surface plasmon resonance (SPR) of copper nanoparticles which depending on irradiation doses. Upon γ irradiation these films turns its color from faint blue to deep reddish brown depending on metal ion concentration. The XRD pattern and FTIR spectrum confirm the formation of the CuNPs. The response of Cu/PVA nanocomposite dosimeters depends on both the irradiation doses and concentration of copper precursor. The dose range for these films was from 50 to 650 kGy, revealing its important applications for high dose dosimetry. Cu/PVA nanocomposites films exhibit good post-irradiation stability in dark and light.
References
1. Saini, I., Rozra, J., Chandak, N., Aggarwal, S., Sharma, P. K., Sharma, A.: Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139, 802 (2013).10.1016/j.matchemphys.2013.02.035Search in Google Scholar
2. Li, J., Liu, C.-y., Xie, Z.: Synthesis and surface plasmon resonance properties of carbon-coated Cu and Co nanoparticles. Mater. Res. Bull. 46, 743 (2011).10.1016/j.materresbull.2011.01.014Search in Google Scholar
3. Soliman, Y. S.: Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat. Phys. Chem. 102, 60 (2014).10.1016/j.radphyschem.2014.04.023Search in Google Scholar
4. Li, Y.-y., Dong, X., Zhang, H.-q.: CeO2 nanowires aqueous-radiation dosimeter for low dose sensitively detecting. Proc. Eng. 52, 202 (2013).10.1016/j.proeng.2013.02.127Search in Google Scholar
5. Dhas, N. A., Raj, C. P., Gedanken, A.: Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10(5), 1446 (1998).10.1021/cm9708269Search in Google Scholar
6. Ida, K., Tomonari, M., Sugiyama, Y., Chujyo, Y., Tokunaga, T., Yonezawa, T., Kuroda, K., Sasaki, K.: Behavior of Cu nanoparticles ink under reductive calcination for fabrication of Cu conductive film. Thin Solid Films. 520, 2789 (2012).10.1016/j.tsf.2011.12.024Search in Google Scholar
7. Valodkar, M., Modi, S., Pal, A., Thakore, S.: Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater. Res. Bull. 46, 384 (2011).10.1016/j.materresbull.2010.12.001Search in Google Scholar
8. Yallappa, S., Manjanna, J., Sindhe, M. A., Satyanarayan, N. D., Pramod, S. N., Nagaraja, K.: Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim. Acta. Pt. A Mol. Biomol. Spectr. 110, 108 (2013).10.1016/j.saa.2013.03.005Search in Google Scholar
9. Qing-Ming, L., Yasunami, T., Kuruda, K., Okido, M.: Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans. Nonferr. Met. Soc. China. 22, 2198 (2012).10.1016/S1003-6326(11)61449-0Search in Google Scholar
10. Lisiecki, I., Pileni, M. P.: Synthesis of copper metallic clusters using reverse micelles as microreactors. Am. Chem. Soc. 115(10), 3887 (1993).10.1021/ja00063a006Search in Google Scholar
11. Suárez-Cerda, J., Espinoza-Gómez, H., Alonso-Núňez, G., Rivero, I. A., Gochi-Ponce, Y., Flores-López, L. Z.: A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J. Saudi Chem. Soc. 21, 341 (2017).10.1016/j.jscs.2016.10.005Search in Google Scholar
12. Yeh, M. S., Yang, Y. S., Lee, Y. P., Lee, H. F., Yeh, Y. H., Yeh, C. S.: Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol. Phys. Chem. B. 103, 6851 (1999).10.1021/jp984163+Search in Google Scholar
13. Liu, Z., Bando, Y.: A novel method for preparing copper nanorods and nanowires. Adv. Mater. 15(3), 303 (2003).10.1002/adma.200390073Search in Google Scholar
14. Yagi, S., Nakanishi, H., Matsubara, E., Matsubara, S., Ichitsubo, T., Hosoya, K.: Formation of Cu nanoparticles by electroless deposition using aqueous CuO suspension. Electrochem. Soc. 155(6), D474 (2008).10.1149/1.2904884Search in Google Scholar
15. Joshi, S. S., Patil, S. F., Iyer, V., Mahamuni, S.: Radiation induces synthesis and characterization of copper nanoparticles. Nanostruct. Mater. 10(7), 1135 (1998).10.1016/S0965-9773(98)00153-6Search in Google Scholar
16. Pham, L. Q., Sohn, J. H., Park, J. H., Kang, H. S., Lee, B. C., Kang, Y. S.: Comparative study on the preparation of conductive copper pastes with copper nanoparticles prepared by electron beam irradiation and chemical reduction. Radiat. Phys. Chem. 80, 638 (2011).10.1016/j.radphyschem.2011.01.004Search in Google Scholar
17. Ali, Z. I., Ghazy, O. A., Meligi, G., Saleh, H. H., Bekhit, M.: Copper nanoparticles: synthesis, characterization and its application as catalyst for p-nitrophenol reduction. J. Inorg. Organo. Polym. Mater. 28, 1195 (2018).10.1007/s10904-018-0780-4Search in Google Scholar
18. Belloni, J., Mostafavi, M., Remita, H., Marignier, J. L., Delcourt, M. O.: Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New. J. Chem. 22(11), 1239 (1998).10.1039/a801445kSearch in Google Scholar
19. Clifford, D. M., Castano, C. E., Rojas, J. V.: Supported transition metal nanomaterials: nanocomposites synthesized by ionizing radiation. Radiat. Phys. Chem. 132, 52 (2017).10.1016/j.radphyschem.2016.12.001Search in Google Scholar
20. Abou Taleb, M. F., Abd El-Mohdy, H. L., Abd El-Rehim, H. A.: Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J. Hazard. Mater. 168, 68 (2009).10.1016/j.jhazmat.2009.02.001Search in Google Scholar PubMed
21. Bhunia, T., Giri, A., Nasim, T., Chattopadhyay, D., Bandyopadhyay, A.: Uniquely different PVA-xanthan gum irradiated membranes as transdermal diltiazem delivery device. Carbohydr. Polym. 95, 252 (2013).10.1016/j.carbpol.2013.02.043Search in Google Scholar PubMed
22. Mallakpour, S., Dinari, M.: Enhancement in thermal properties of poly(vinyl alcohol) nanocomposites reinforced with Al2O3 nanoparticles. J. Reinf. Plast. Comp. 32(4), 217 (2013).10.1177/0731684412467236Search in Google Scholar
23. Akhavan, A., Khoylou, F., Ataeivarjovi, E.: Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films. Radiat. Phys. Chem. 138, 49 (2017).10.1016/j.radphyschem.2017.02.057Search in Google Scholar
24. Cieśla, K., Abramowska, A., Boguski, J., Drewnik, J.: The effect of poly(vinyl alcohol) type and radiation treatment on the properties of starch-poly(vinyl alcohol) films. Radiat. Phys. Chem. 141, 142 (2017).10.1016/j.radphyschem.2017.06.015Search in Google Scholar
25. Ali, Z. I., Ghazy, O. A., Meligi, G., Saleh, H. H., Bekhit, M.: Radiation-induced synthesis of copper/poly(vinyl alcohol) nanocomposites and their catalytic activity. Adv. Polym. Techn. 37(2), 21675 (2018).10.1002/adv.21675Search in Google Scholar
26. Tian, K., Liu, C., Yang, H., Ren, X.: In situ synthesis of copper nanoparticles/polystyrene composite. Colloids. Surf. A: Phys. Eng. Asp. 397, 12 (2012).10.1016/j.colsurfa.2012.01.019Search in Google Scholar
27. Chowdhury, M. N. K., Beg, M. D. H., Khan, M. R., Mina, M. F.: Synthesis of copper nanoparticles and their antimicrobial performances in natural fibres. Mater. Lett. 98, 26 (2013).10.1016/j.matlet.2013.02.024Search in Google Scholar
28. Bhat, N. V., Nate, M. M., Kurup, M. B., Bambole, V. A., Sabharwal, S.: Effect of γ-radiation on the structure and morphology of polyvinyl alcohol films. Nucl. Instr. Meth. Phys. Res. B 237, 585 (2005).10.1016/j.nimb.2005.04.058Search in Google Scholar
29. Bisen, D. S., Bhatt, R., Bajpai, A. K., Bajpai, R., Katare, R.: Reverse indentation size effects in gamma irradiated blood compatible blend films of chitosan-poly (vinyl alcohol) for possible medical applications. Mater. Sci. Eng. C. 71, 982 (2017).10.1016/j.msec.2016.11.001Search in Google Scholar PubMed
30. Chahal, R. P., Mahendia, S., Tomar, A. K., Kumar, S.: SHI irradiated PVA/Ag nanocomposites and possibility of UV blocking. Opt. Mater. 52, 237 (2016).10.1016/j.optmat.2015.12.049Search in Google Scholar
31. Khatouri, J., Mostafavi, M., Amblard, J., Belloni, J.: Radiation-induced copper aggregates and oligomers. Chem. Phys. Lett. 191, 351 (1992).10.1016/0009-2614(92)85313-YSearch in Google Scholar
32. Eisa, W. H., Abdel-Moneam, Y. K., Shaaban, Y., Abdel-Fattah, A. A., Abou Zeid, A. M.: Gamma-irradiation assisted seeded growth of Ag nanoparticles within PVA Matrix. Mater. Chem. Phys. 128, 109 (2011).10.1016/j.matchemphys.2011.02.076Search in Google Scholar
33. Belloni, J.: Mechanisms of metal nanoparticles nucleation and growth studied by Radiolysis. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.08.001.10.1016/j.radphyschem.2018.08.001Search in Google Scholar
34. Flores-Rojas, G. G.: Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: a short review. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.08.011.10.1016/j.radphyschem.2018.08.011Search in Google Scholar
35. Ghoreishian, S. M., Kang, S.-M., Raju, G. S. R., Norouzi, M., Jang, S.-C., Yun, H. J., Lim, S. T., Han, Y.-K., Roh, C., Huh, Y. S.: γ-radiolysis as a highly efficient green approach to the synthesis of metal nanoclusters: a review of mechanisms and applications. Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.10.164.10.1016/j.cej.2018.10.164Search in Google Scholar
36. Nagy, V., Sholom, S. V., Chumak, V. V., Desrosiers, M. F.: Uncertainties in alanine dosimetry in the therapeutic dose range. Appl. Radiat. Isot. 56, 917 (2002).10.1016/S0969-8043(01)00271-8Search in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging
- Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent
- DST-deactivation of nickel-63 nitrate
- Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin
- Assessment of radioactivity from selected soil samples from Halfa Aljadida area, Sudan
- In situ measurement of terrestrial gamma dose rates in eastern region of Peninsular Malaysia and its relation to geological formation and soil types
- Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system
- Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties
Articles in the same Issue
- Frontmatter
- A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging
- Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent
- DST-deactivation of nickel-63 nitrate
- Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin
- Assessment of radioactivity from selected soil samples from Halfa Aljadida area, Sudan
- In situ measurement of terrestrial gamma dose rates in eastern region of Peninsular Malaysia and its relation to geological formation and soil types
- Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system
- Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties