Abstract
The values of mass attenuation coefficient, the effective atomic number and the electron density of barite-doped, limonite-doped, serpentine-doped and undoped lithium borate glasses were obtained not only from experimental study using the narrow beam transmission method for 81, 121, 244, 276, 344, 383, 444 and 778 keV gamma energies with Hp-Ge detector, but also therotical work by WinXCom software (1 keV–105 MeV). From the obtained results, all glasses type mass attenuation coefficient values tend to decrease under the condition of increasing energy by means of varied interaction mechanism in different energy regions. In addition, the effect of chemical composition on shielding properties was also investigated. It is inferred that doping element with high atomic number improves the gamma rays shielding properties of system. Among the investigated samples, barite-doped lithium borate glasses have highest value of mass attenuation, which makes barite-doped samples good candidates for artificial radiation application where visual detection is especially required.
References
1. Sherer, M. A. S., Visconti, P. J., Ritenour, E. R., Haynes, K.: Radiation Protection in Medical Radiography-E-Book. Elsevier, Mosby, China (2017).Suche in Google Scholar
2. El-Sayed, A. W., Michael, A. F., Mohamed, A. B.: Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26 (2016).10.1016/j.anucene.2016.05.028Suche in Google Scholar
3. Gallala, W., Hayouni, Y., Gaied, M. E., Fusco, M., Alsaied, J., Bailey, K., Bourham, M.: Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste. Ann. Nucl. Energy 101, 600 (2017).10.1016/j.anucene.2016.11.022Suche in Google Scholar
4. Yadollahi, A., Nazemi, E., Zolfaghari, A., Ajorloo, A. M.: Application of artificial neural network for predicting the optimal mixture of radiation shielding concrete. Prog. Nucl. Energy 89, 69 (2016).10.1016/j.pnucene.2016.02.010Suche in Google Scholar
5. Singh, K., Singh, S., Dhaliwal, A. S., Singh, G.: Gamma radiation shielding analysis of lead-flyash concretes Kanwaldeep. Appl. Radiat. Isot. 95, 174 (2015).10.1016/j.apradiso.2014.10.022Suche in Google Scholar PubMed
6. Oto, B., Yıldız, N., Korkut, T., Kavaz, E.: Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Des. 293, 166 (2015).10.1016/j.nucengdes.2015.07.060Suche in Google Scholar
7. Sharaf, J. M., Saleh, H.: Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures. Radiat. Phys. Chem. 110, 87 (2015).10.1016/j.radphyschem.2015.01.031Suche in Google Scholar
8. Singh, S. S., Singh, G. C., Thind, K. S., Mudahar, G. S.: Buildup of gamma ray photons in flyash concretes: a study. Ann. Nucl. Energy 37, 681 (2010).10.1016/j.anucene.2010.02.006Suche in Google Scholar
9. El-Sayed, A. W., Bourham, M. A.: Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 85, 306 (2015).10.1016/j.anucene.2015.05.011Suche in Google Scholar
10. Kaplan, M. F.: Concrete Radiation Shielding. John Wiley and Sons, Inc., New York (1989).Suche in Google Scholar
11. Rao, R. B., Gerhardt, R. A., Veeraiah, N.: Spectroscopic characterization, conductivity and relaxation anomalies in the Li2O–MgO–B2O3 glass system: effect of nickel ions.J. Phys. Chem. Solids 69(11), 2813 (2008).10.1016/j.jpcs.2008.06.145Suche in Google Scholar
12. Chanthima, N., Kaewkhao, J., Limsuwan, P.: Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO and PbO in the energy region of 1 keV to 100 GeV.Ann. Nucl. Energy 41, 119 (2012).10.1016/j.anucene.2011.10.021Suche in Google Scholar
13. Kirdsiri, K., Kaewkhao, J., Chanthima, N., Limsuwan, P.: Comparative study of silicate glass of Bi2O3, PbO and BaO containing: radiation shielding and optical properties. Ann. Nucl. Energy 38, 1438 (2011).10.1016/j.anucene.2011.01.031Suche in Google Scholar
14. Sayyed, M. I.: Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloys Compd. 688, 111 (2016).10.1016/j.jallcom.2016.07.153Suche in Google Scholar
15. Sharma, R., Sharma, V., Singh, P. S., Singh, T.: Effective atomic numbers for some calcium–strontium-borate glasses.Ann. Nucl. Energy 45, 144 (2012).10.1016/j.anucene.2012.03.005Suche in Google Scholar
16. Singh, K. J., Singh, N., Kaundal, R. S., Singh, K.: Gamma-ray shielding and structural properties of PbO–SiO2 glasses. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms 266(6), 944 (2008).10.1016/j.nimb.2008.02.004Suche in Google Scholar
17. Singh, S., Kumar, A., Singh, D., Thind, K. S., Mudahar, G. S.: Barium–borate–flyash glasses: as radiation shielding materials. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms 266(1), 140 (2008).10.1016/j.nimb.2007.10.018Suche in Google Scholar
18. Rao, R. B., Gerhardt, R. A.: Effect of alkaline earth modifier ion on the optical, magnetic and electrical properties of lithium nickel borate glasses. Mater. Chem. Phys. 112(1), 186 (2008).10.1016/j.matchemphys.2008.05.046Suche in Google Scholar
19. Gedam, R. S., Ramteke, D. D.: Electrical, dielectric and optical properties of La 2 O 3 doped lithium borate glasses. J. Phys. Chem. Solids 74(7), 1039 (2013).10.1016/j.jpcs.2013.03.001Suche in Google Scholar
20. Parandamaiah, M., Kumar, K. N., Babu, S., Reddy, S. V., Ratnakaram, Y. C.: Dy3+ doped Lithium Sodium Bismuth Borate Glasses for Yellow Luminescent Photonic applications. Int. J. Eng. Res. Appl. 5, 126 (2015).Suche in Google Scholar
21. El-Alaily, N. A., Mohamed, R. M.: Effect of irradiation on some optical properties and density of lithium borate glass. Mater. Sci. Eng. B 98(3), 193 (2003).10.1016/S0921-5107(02)00587-1Suche in Google Scholar
22. Hubbell, J. H.: Review of photon interaction cross section data in the medical and biological context.Phys. Med. Biol. 44(1), R1 (1999).10.1088/0031-9155/44/1/001Suche in Google Scholar PubMed
23. Hine, G. J.: The effective atomic numbers of materials for various gamma-ray interactions. Phys. Rev. 85, 725 (1952).Suche in Google Scholar
24. Gowda, S., Krishnaveni, S., Gowda, R.: Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30–1333 keV. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms 239(4), 361 (2005).10.1016/j.nimb.2005.05.048Suche in Google Scholar
25. Issa, S. A. M., Darwish, A. A. A., El-Nahass, M. M.: The evolution of gamma-rays sensing properties of pure and doped phthalocyanine. Prog. Nucl. Energy 100, 276 (2017).10.1016/j.pnucene.2017.06.016Suche in Google Scholar
26. Elbashir, B. O., Dong, M. G., Sayyed, M. I., Issa, S. A., Matori, K. A., Zaid, M. H. M.: Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data. Results Physics 9, 6 (2018).10.1016/j.rinp.2018.01.075Suche in Google Scholar
27. Issa, S. A., Kumar, A., Sayyed, M. I., Dong, M. G., Elmahroug, Y.: Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses. Mater. Chem. Phys. 212, 12 (2018).10.1016/j.matchemphys.2018.01.058Suche in Google Scholar
28. Issa, S. A., Sayyed, M. I., Zaid, M. H. M., Matori, K. A.: Photon parameters for gamma-rays sensing properties of some oxide of lanthanides. Results Physics 9, 206 (2018).10.1016/j.rinp.2018.02.039Suche in Google Scholar
29. Gerward, L., Guilbert, N., Bjørn, J. K., Levring, H.: X-ray absorption in matter reengineering XCOM. Radiat. Phys. Chem. 60, 23 (2001).10.1016/S0969-806X(00)00324-8Suche in Google Scholar
30. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H.: WinXCom; program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71(3), 653 (2004).10.1016/j.radphyschem.2004.04.040Suche in Google Scholar
31. Ruengsri, S.: Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Sci. Technol. Nucl. Ins. 2014, 5 (2014).10.1155/2014/218041Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Determination of the stability constants of Pu(VI) carbonate complexes by capillary electrophoresis coupled with inductively coupled plasma mass spectrometer
- Sequential analysis of uranium and plutonium in environmental matrices by extractive liquid scintillation spectrometry
- A review of the analytical methodology to determine Radium-226 and Radium-228 in drinking waters
- Redox sorption of Ce(III)/Ce(IV) on potassium bismuthate
- Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging
- Synthesis of isotope – labeled selective PDE5 inhibitor sildenafil (UK 92480-10)
- Effect of gamma irradiation on the structure characteristics and mass attenuation coefficient of MgO nanoparticles
- Evaluation of gamma-ray attenuation properties of lithium borate glasses doped with barite, limonite and serpentine
- Corrigendum
- Corrigendum to: Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production
- Corrigendum to: Definitions of radioisotope thick target yields
Artikel in diesem Heft
- Frontmatter
- Determination of the stability constants of Pu(VI) carbonate complexes by capillary electrophoresis coupled with inductively coupled plasma mass spectrometer
- Sequential analysis of uranium and plutonium in environmental matrices by extractive liquid scintillation spectrometry
- A review of the analytical methodology to determine Radium-226 and Radium-228 in drinking waters
- Redox sorption of Ce(III)/Ce(IV) on potassium bismuthate
- Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging
- Synthesis of isotope – labeled selective PDE5 inhibitor sildenafil (UK 92480-10)
- Effect of gamma irradiation on the structure characteristics and mass attenuation coefficient of MgO nanoparticles
- Evaluation of gamma-ray attenuation properties of lithium borate glasses doped with barite, limonite and serpentine
- Corrigendum
- Corrigendum to: Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production
- Corrigendum to: Definitions of radioisotope thick target yields