Home Evaluation of gamma-ray attenuation properties of lithium borate glasses doped with barite, limonite and serpentine
Article
Licensed
Unlicensed Requires Authentication

Evaluation of gamma-ray attenuation properties of lithium borate glasses doped with barite, limonite and serpentine

  • Nergiz Yıldız Yorgun EMAIL logo , Esra Kavaz , Berna Oto and Fatma Akdemir
Published/Copyright: May 29, 2018

Abstract

The values of mass attenuation coefficient, the effective atomic number and the electron density of barite-doped, limonite-doped, serpentine-doped and undoped lithium borate glasses were obtained not only from experimental study using the narrow beam transmission method for 81, 121, 244, 276, 344, 383, 444 and 778 keV gamma energies with Hp-Ge detector, but also therotical work by WinXCom software (1 keV–105 MeV). From the obtained results, all glasses type mass attenuation coefficient values tend to decrease under the condition of increasing energy by means of varied interaction mechanism in different energy regions. In addition, the effect of chemical composition on shielding properties was also investigated. It is inferred that doping element with high atomic number improves the gamma rays shielding properties of system. Among the investigated samples, barite-doped lithium borate glasses have highest value of mass attenuation, which makes barite-doped samples good candidates for artificial radiation application where visual detection is especially required.

References

1. Sherer, M. A. S., Visconti, P. J., Ritenour, E. R., Haynes, K.: Radiation Protection in Medical Radiography-E-Book. Elsevier, Mosby, China (2017).Search in Google Scholar

2. El-Sayed, A. W., Michael, A. F., Mohamed, A. B.: Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26 (2016).10.1016/j.anucene.2016.05.028Search in Google Scholar

3. Gallala, W., Hayouni, Y., Gaied, M. E., Fusco, M., Alsaied, J., Bailey, K., Bourham, M.: Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste. Ann. Nucl. Energy 101, 600 (2017).10.1016/j.anucene.2016.11.022Search in Google Scholar

4. Yadollahi, A., Nazemi, E., Zolfaghari, A., Ajorloo, A. M.: Application of artificial neural network for predicting the optimal mixture of radiation shielding concrete. Prog. Nucl. Energy 89, 69 (2016).10.1016/j.pnucene.2016.02.010Search in Google Scholar

5. Singh, K., Singh, S., Dhaliwal, A. S., Singh, G.: Gamma radiation shielding analysis of lead-flyash concretes Kanwaldeep. Appl. Radiat. Isot. 95, 174 (2015).10.1016/j.apradiso.2014.10.022Search in Google Scholar PubMed

6. Oto, B., Yıldız, N., Korkut, T., Kavaz, E.: Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Des. 293, 166 (2015).10.1016/j.nucengdes.2015.07.060Search in Google Scholar

7. Sharaf, J. M., Saleh, H.: Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures. Radiat. Phys. Chem. 110, 87 (2015).10.1016/j.radphyschem.2015.01.031Search in Google Scholar

8. Singh, S. S., Singh, G. C., Thind, K. S., Mudahar, G. S.: Buildup of gamma ray photons in flyash concretes: a study. Ann. Nucl. Energy 37, 681 (2010).10.1016/j.anucene.2010.02.006Search in Google Scholar

9. El-Sayed, A. W., Bourham, M. A.: Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 85, 306 (2015).10.1016/j.anucene.2015.05.011Search in Google Scholar

10. Kaplan, M. F.: Concrete Radiation Shielding. John Wiley and Sons, Inc., New York (1989).Search in Google Scholar

11. Rao, R. B., Gerhardt, R. A., Veeraiah, N.: Spectroscopic characterization, conductivity and relaxation anomalies in the Li2O–MgO–B2O3 glass system: effect of nickel ions.J. Phys. Chem. Solids 69(11), 2813 (2008).10.1016/j.jpcs.2008.06.145Search in Google Scholar

12. Chanthima, N., Kaewkhao, J., Limsuwan, P.: Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO and PbO in the energy region of 1 keV to 100 GeV.Ann. Nucl. Energy 41, 119 (2012).10.1016/j.anucene.2011.10.021Search in Google Scholar

13. Kirdsiri, K., Kaewkhao, J., Chanthima, N., Limsuwan, P.: Comparative study of silicate glass of Bi2O3, PbO and BaO containing: radiation shielding and optical properties. Ann. Nucl. Energy 38, 1438 (2011).10.1016/j.anucene.2011.01.031Search in Google Scholar

14. Sayyed, M. I.: Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloys Compd. 688, 111 (2016).10.1016/j.jallcom.2016.07.153Search in Google Scholar

15. Sharma, R., Sharma, V., Singh, P. S., Singh, T.: Effective atomic numbers for some calcium–strontium-borate glasses.Ann. Nucl. Energy 45, 144 (2012).10.1016/j.anucene.2012.03.005Search in Google Scholar

16. Singh, K. J., Singh, N., Kaundal, R. S., Singh, K.: Gamma-ray shielding and structural properties of PbO–SiO2 glasses. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms 266(6), 944 (2008).10.1016/j.nimb.2008.02.004Search in Google Scholar

17. Singh, S., Kumar, A., Singh, D., Thind, K. S., Mudahar, G. S.: Barium–borate–flyash glasses: as radiation shielding materials. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms 266(1), 140 (2008).10.1016/j.nimb.2007.10.018Search in Google Scholar

18. Rao, R. B., Gerhardt, R. A.: Effect of alkaline earth modifier ion on the optical, magnetic and electrical properties of lithium nickel borate glasses. Mater. Chem. Phys. 112(1), 186 (2008).10.1016/j.matchemphys.2008.05.046Search in Google Scholar

19. Gedam, R. S., Ramteke, D. D.: Electrical, dielectric and optical properties of La 2 O 3 doped lithium borate glasses. J. Phys. Chem. Solids 74(7), 1039 (2013).10.1016/j.jpcs.2013.03.001Search in Google Scholar

20. Parandamaiah, M., Kumar, K. N., Babu, S., Reddy, S. V., Ratnakaram, Y. C.: Dy3+ doped Lithium Sodium Bismuth Borate Glasses for Yellow Luminescent Photonic applications. Int. J. Eng. Res. Appl. 5, 126 (2015).Search in Google Scholar

21. El-Alaily, N. A., Mohamed, R. M.: Effect of irradiation on some optical properties and density of lithium borate glass. Mater. Sci. Eng. B 98(3), 193 (2003).10.1016/S0921-5107(02)00587-1Search in Google Scholar

22. Hubbell, J. H.: Review of photon interaction cross section data in the medical and biological context.Phys. Med. Biol. 44(1), R1 (1999).10.1088/0031-9155/44/1/001Search in Google Scholar PubMed

23. Hine, G. J.: The effective atomic numbers of materials for various gamma-ray interactions. Phys. Rev. 85, 725 (1952).Search in Google Scholar

24. Gowda, S., Krishnaveni, S., Gowda, R.: Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30–1333 keV. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms 239(4), 361 (2005).10.1016/j.nimb.2005.05.048Search in Google Scholar

25. Issa, S. A. M., Darwish, A. A. A., El-Nahass, M. M.: The evolution of gamma-rays sensing properties of pure and doped phthalocyanine. Prog. Nucl. Energy 100, 276 (2017).10.1016/j.pnucene.2017.06.016Search in Google Scholar

26. Elbashir, B. O., Dong, M. G., Sayyed, M. I., Issa, S. A., Matori, K. A., Zaid, M. H. M.: Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data. Results Physics 9, 6 (2018).10.1016/j.rinp.2018.01.075Search in Google Scholar

27. Issa, S. A., Kumar, A., Sayyed, M. I., Dong, M. G., Elmahroug, Y.: Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses. Mater. Chem. Phys. 212, 12 (2018).10.1016/j.matchemphys.2018.01.058Search in Google Scholar

28. Issa, S. A., Sayyed, M. I., Zaid, M. H. M., Matori, K. A.: Photon parameters for gamma-rays sensing properties of some oxide of lanthanides. Results Physics 9, 206 (2018).10.1016/j.rinp.2018.02.039Search in Google Scholar

29. Gerward, L., Guilbert, N., Bjørn, J. K., Levring, H.: X-ray absorption in matter reengineering XCOM. Radiat. Phys. Chem. 60, 23 (2001).10.1016/S0969-806X(00)00324-8Search in Google Scholar

30. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H.: WinXCom; program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71(3), 653 (2004).10.1016/j.radphyschem.2004.04.040Search in Google Scholar

31. Ruengsri, S.: Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Sci. Technol. Nucl. Ins. 2014, 5 (2014).10.1155/2014/218041Search in Google Scholar

Received: 2018-02-06
Accepted: 2018-04-16
Published Online: 2018-05-29
Published in Print: 2018-10-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2938/html
Scroll to top button