Abstract
The present work has been oriented to prepare radioiodinated olmesartan for a potential cardiac imaging. Olmesartan has been labeled using 125I or 131I with N-bromosuccinimide (NBS) as an oxidizing agent. Many factors like amount of N-bromosuccinimide, amount of substrate, pH, reaction temperature and reaction time, have been systematically studied to optimize high yield of [125I]iodoolmesartan. The biological distribution indicates the suitability of [125I]iodoolmesartan as a novel tracer to image heart.
References
1. Gavras, I., Gavras, H.: Experimental, clinical, and epidemiological evidence. In: J. I. S. Robertson, M. G. Nicholls (Eds.), The Renin-Angiotensin System, vol. 40 (1993), Gower Medical Publishing, London, p. 1.Suche in Google Scholar
2. Belz, G., Fuchs, B., Malerczyk, C., Magin, G., Roll, S.: Inhibition of angiotensin II pressor response and ex vivo angiotensin II radioligand binding by candesartan cilexetil and losartan in healthy human volunteers. J. Hum. Hypertens. 11, S45 (1997).Suche in Google Scholar
3. Kenakin, T., Boselli, C.: Pharmacologic discrimination between receptor heterogeneity and allosteric interaction: resultant analysis of gallamine and pirenzepine antagonism of muscarinic responses in rat trachea. J. Pharmacol. Exp. Ther. 250(3), 944 (1989).10.1016/S0022-3565(25)22846-4Suche in Google Scholar
4. Audi, G., Bersillon, O., Blachot, J., Wapstra, A. H.: The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A. 729(1), 3 (2003).10.1016/j.nuclphysa.2003.11.001Suche in Google Scholar
5. Robbins, J., Schneider, A. B.: Thyroid cancer following exposure to radioactive iodine. Rev. Endocr. Metab. Disord. 1(3), 197 (2000).10.1023/A:1010031115233Suche in Google Scholar
6. Narra, V. R., Howell, R. W., Harapanhalli, R. S., Sastry, K. S., Rao, D. V.: Radiotoxicity of some iodine-123, iodine-125 and iodine- 131-labeled compounds in mouse testes: implications for radiopharmaceutical design. J. Nucl. Med. 33(12), 2196 (1992).Suche in Google Scholar
7. James, L. P., Marshall, J. D., Heulitt, M. J., Wells, T. G., Letzig, L., Kearns, G. L.: Pharmacokinetics and pharmacodynamics of famotidine in children. J. Clin. Pharmacol. 36(1), 48 (1996).10.1002/j.1552-4604.1996.tb04151.xSuche in Google Scholar
8. Yang, G., Wang, X., Wang, Z., Jiang, Y., Fu, J.: Tc-99m MDP uptake in a giant pulmonary chondroma. J. Clin. Nucl. Med. 36(11), 1029 (2011).10.1097/RLU.0b013e318219b3adSuche in Google Scholar
9. Sanad, M. H.: Labeling of omeprazole with technetium-99m for diagnosis of stomach. Radiochemistry 55(6), 605 (2013).10.1134/S1066362213060076Suche in Google Scholar
10. Sanad, M. H., Farag, A. B., Dina, H. S.: Radioiodination and bioevaluation of rolipram as a tracer for brain imaging: in silico study, molecular modeling and gamma scintigraphy. J. Label Compd. Radiopharm. 61, 501 (2018).10.1002/jlcr.3614Suche in Google Scholar
11. Sanad, M. H., Ebtisam, A. M., Safaa, B. C.: Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging. Radiochim. Acta 106(4), 329 (2018).10.1515/ract-2017-2830Suche in Google Scholar
12. Sanad, M. H., Saleh, G. M., Marzook, F. A.: Radioiodination and biological evaluation of nizatidine as a new highly selective radiotracer for peptic ulcer disorder detection. J. Label. Compd. Radiopharm. 60(13), 600 (2017).10.1002/jlcr.3541Suche in Google Scholar
13. Abi-Dargham, A., Zea-Ponce, Y., Terriere, D., Al-Tikriti, M., Baldwin, R. M., Hoffer, P., Charney, D., Leysen, J. E., Laruelle, M., Mertens, J., Innis, R. B.: Preclinical evaluation of [123I]R93274 as a SPECT radiotracer for imaging 5-HT2A receptors. Eur. J. Pharmacol. 321(3), 285 (1997).10.1016/S0014-2999(96)00906-5Suche in Google Scholar
14. Mariano, G. D., Barbotte, E., Basurko, C., Comte, F., Rossi, M.: Accuracy and precision of perfusion lung scintigraphy versus 133 Xe-radiospirometry for preoperative pulmonary functional assessment of patients with lung cancer. Eur. J. Nucl. Med. Mol. Imaging 33(9), 1048 (2006).10.1007/s00259-006-0087-5Suche in Google Scholar PubMed
15. Sanad, M. H., Sallam, K. M., Marzook, F. A., Abd-Elhaliem, S. M.: Radioiodination and biological evaluation of candesartan as a tracer for cardiovascular disorder detection. J. Label. Compd. Radiopharm. 59, 484 (2016).10.1002/jlcr.3435Suche in Google Scholar PubMed
16. Nimmo, M. J., Merrick, M. V., Millar, A. M.: A comparison of the economics of xenon 127, xenon 133 and krypton 81m for routine ventilation imaging of the lungs. J. Radiol. 58(691), 635 (1985).10.1259/0007-1285-58-691-635Suche in Google Scholar PubMed
17. Rowe, I. F., Sleight, P. J., Gaunt, J. I., Croft, D. N.: Assessment of pulmonary ventilation scans using xenon-127 in the diagnosis of pulmonary embolis. Eur. J. Nucl. Med. 9(4), 154 (1984).10.1007/BF00251462Suche in Google Scholar PubMed
18. Stavngaard, T., Sogaard, L. V., Mortensen, J., Hanson, L. G., Schmiedeskamp, J., Berthelsen, A. K., Dirksen, A.: Hyperpolarised3 He MRI and 81mKr SPECT in chronic obstructive pulmonary disease. Eur. J. Nucl. Med. Mol. Imaging 32(4), 448 (2005).10.1007/s00259-004-1691-xSuche in Google Scholar PubMed
19. Wu, Y., Kotzer, C. J., Makrogiannis, S., Logan, G. A., Haley, H., Barnette, M. S., Sarkar, S. K.: A Noninvasive [99mTc]DTPA SPECT/CT imaging methodology as a measure of lung permeability in a Guinea Pig model of COPD. Mol. Imaging Biol. 13(5), 923 (2011).10.1007/s11307-010-0423-9Suche in Google Scholar PubMed
20. Ogi, S., Gotoh, E., Uchiyama, M., Fukuda, K., Urashima, M., Fukumitsu, N.: Influence of hilar deposition in the evaluation of the alveolar epithelial permeability on 99mTc-DTPA aerosol inhaled scintigraphy. Jpn. J. Radiol. 27(1), 20 (2009).10.1007/s11604-008-0288-xSuche in Google Scholar PubMed PubMed Central
21. Parker, J. A., Coleman, R. E., Grady, E., Royal, H. D., Siegel, B. A., Stabin, M. G., Sostman, H. D., Hilson, A. J. W.: SNM practice guideline for lung scintigraphy 4. J. Nucl. Med. Technol. 40(1), 57(2012).10.2967/jnmt.111.101386Suche in Google Scholar PubMed
22. Alberto, R., Pak, J. K., Van Staveren, D., Mundwiler, S., Benny, P.: Mono-, bi-, or tridentate ligands? The labeling of peptides with 99mTc-carbonyls. Biopolymers 76(4), 324 (2004).10.1002/bip.20129Suche in Google Scholar PubMed
23. Miroslavova, A. E., Gorshkova, N. I., Lompov, A. L., Yalfimov, A. N., Suglobov, D. N., Ellis, B. L., Braddock, R., Smith, A., Prescott, M. C., Lawson, R. S., Sharma, H. L.: Evaluation of 99mTc(CO)5 I as a potential lung perfusion agent. J. Nucl. Med. Biol. 36(1), 73 (2009).10.1016/j.nucmedbio.2008.10.017Suche in Google Scholar PubMed
24. De, K., Chandra, S., Sarkar, B., Ganguly, S., Misra, M.: Synthesis and biological evaluation of 99mTc-DHPM complex: a potential new radiopharmaceutical for lung imaging studies. J. Radioanal. Nucl. Chem. 283, 621 (2010).10.1007/s10967-009-0398-7Suche in Google Scholar
25. Laurence, L. B.: Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 12th Edn., McGraw Hill Professional, New York (2011).Suche in Google Scholar
26. Richard, A. H., Pamela, C. C.: Pharmacology. 4th Ed., Lippincott Williams and Wilkin, Baltimore (2009).Suche in Google Scholar
27. Jang, B.-S., Lee, J.-S., Rho, J. K., Park, S. H.: Biodistribution of 99mTc tricarbonyl glycine oligomers. Toxicol. Res. 28(4), 235 (2012).10.5487/TR.2012.28.4.235Suche in Google Scholar
28. Jang, B.-S., Park, K.-B., Yun, H.-I.: Preparation and biological evaluation of 99mTc tricarbonyl cysteine. Korea J. Vet. Res. 44(1), 15 (2004).Suche in Google Scholar
29. Gu, T., Shi, H., Xiu, Y., Gu, Y.: Primary pulmonary osteosarcoma: PET/CT and SPECT/CT findings. J. Clin. Nucl. Med. 36(12), e209 (2011).10.1097/RLU.0b013e3182291ec3Suche in Google Scholar
30. Liu, H. R., Zhao, R. R., Jiao, X. Y., Wang, Y. Y., Fu, M.: Relationship of myocardial remodeling to the genesis of serum autoantibodies to cardiac beta1-adrenoceptors and muscarinic type 2 acetylcholine receptors in rats. J. Am. College Cardiol. 39(11), 1866 (2002).10.1016/S0735-1097(02)01865-XSuche in Google Scholar
31. Byun, B. H., Kong, C. B., Lim, I., Choi, C. W., Song, W. S., Cho, W. H., Jeon, D. G., Koh, J. S., Lee, S. Y., Lim, S. M.: Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J. Nucl. Med. 54(7), 1053 (2013).10.2967/jnumed.112.115964Suche in Google Scholar
32. Sanad, M.: Novel radiochemical and biological characterization of 99mTc-histamine as a model for brain imaging. J. Anal. Sci. Technol. 5(1), 23 (2014).10.1186/s40543-014-0023-4Suche in Google Scholar
33. Amin, A. M., Sanad, M. H., Abd-Elhaliem, S. M.: Radiochemical and biological characterization of 99mTc-piracetam for brain imaging. Radiochemistry 55(6), 624 (2013).10.1134/S1066362213060118Suche in Google Scholar
34. Rhodes, B. A.: Considerations in the radiolabeling of albumin. Sem. Nucl. Med. 4(3), 281 (1974).10.1016/S0001-2998(74)80015-2Suche in Google Scholar
35. Kuchar, M., Oliveira, M. C., Gano, L., Santos, I., Kniess, T.: Radioiodinated sunitinib as a potential radiotracer for imaging angiogenesis-radiosynthesis and first radiopharmacological evaluation of 5-[125I]Iodo-sunitinib. Bioorg. Med. Chem. Lett. 22(8), 2850 (2012).10.1016/j.bmcl.2012.02.068Suche in Google Scholar PubMed
36. Attila, V., Sandor, N., Zoltan, K., Rezso, G. L., Rosch, F.: Handbook of Nuclear Chemistry. 2nd Ed., Springer, New York (2011).Suche in Google Scholar
37. Sanad, M. H.: Labeling and biological evaluation of 99mTcazithromycin for infective inflammation diagnosis. Radiochemistry 55(5), 539 (2013).10.1134/S1066362213050159Suche in Google Scholar
38. Sanad, M. H., El-Bayoumy, A. S. A., Ibrahim A. A.: Comparative biological evaluation between 99mTc(CO)3 and 99mTc-Sn (II) complexes of novel quinoline derivative: a promising infection radiotracer. J. Radioanal. Nucl. Chem. 311, 1 (2016).10.1007/s10967-016-4945-8Suche in Google Scholar
39. Sanad, M. H., Shweeta, H.: Preparation and bio-evaluation of 99mTc-carbonyl complex of ursodeoxycholic acid for hepatobiliary imaging. J. Mol. Imag. Dyn. 5, 119 (2015).Suche in Google Scholar
40. El-Kawy, O. A., Sanad, M. H., Marzook, F.: 99mTc-Mesalamine as potential agent for diagnosis and monitoring of ulcerative colitis: labelling, characterization and biological evaluation. J. Radioanal. Nucl. Chem. 308, 279 (2016).10.1007/s10967-015-4338-4Suche in Google Scholar
41. Greenwood, N., Earnshaw, A.: Chemistry of the Elements. 2nd Ed., Butterworth Heinemann, Oxford (1997).Suche in Google Scholar
42. Sanad, M. H., Amin, A. M.: Optimization of labeling conditions and bioevalution of 99mtc-meloxicam for inflammation imaging. J. Radiochem. 55(5), 521 (2013).10.1134/S1066362213050123Suche in Google Scholar
43. Sanad, M. H., Abdel-Ghaney, I. Y.: Synthesis of 99mTc-erythromycin complex as a model for infection sites imaging. J. Radiochem. 55(4), 418 (2013).10.1134/S1066362213040139Suche in Google Scholar
44. Rbbins, P. J.: Chromatography of Technetium-99m Radiopharmaceuticals, a Practical Guide, Society of Nuclear Medicine. New York, NY, USA (1984).Suche in Google Scholar
45. Walovitch, R. C., Hill, T. C., Garrity, S. T., Cheesman, E. H., Burgess, B. A., O’Leary, D. H., Watson, A. D., Ganey, M. V., Morgan, R. A., Williams, S. J.: Characterization of Tc-99m, L, L ECD for brain perfusion imaging. J. Nucl. Med. 30, 1892 (1989).Suche in Google Scholar
46. Kishore, K. H., Tejashkumar, P., Swapan, R., Veerappan, S.: Identification, synthesis, and characterization of unknown impurity in the famotidine powder for oral suspension due to excipient interaction by UPLC-MS/MS and NMR. J. Liq. Chromatogr. Rel. Technol. 38, 977 (2015).10.1080/10826076.2014.999201Suche in Google Scholar
47. Attila, M., Zsofia, S., Szabolcs, B., Zoltan, S., Tamas, G., Akos, R., Bela, N., Adam, D.: Solution-state NMR spectroscopy of famotidine revisited: spectral assignment, protonation sites, and their structural consequences. Anal. Bioanal. Chem. 402, 1653 (2012).10.1007/s00216-011-5599-6Suche in Google Scholar PubMed
48. Judah, A., Carl, D. A., John, B. A.: Iodination and iodocompounds. Part IV. The effect of substituents and solvent composition on the rate of aromatic iodination by means of the tri-iodine cation. J. Chem. Soc. Perkin. 2, 595 (1973).10.1039/p29730000595Suche in Google Scholar
49. Attila, V., Sandor, N., Zoltan, K., Rezso, G. L., Rosch, F.: Handbook of Nuclear Chemistry, Vol. 4, 2nd Ed., Kluwer Academic, Dordrecht, Netherlands (2011).Suche in Google Scholar
50. Michael, J. A., Wilbur, D. S.: Radiohalogens for imaging and therapy. Chem. Soc. Rev. 34(2), 153 (2005).10.1039/b313872kSuche in Google Scholar PubMed
51. Liu, F. E. I., Youfeng, H. E., Luo, Z.: IAEA, Austria, Technical Reports; Series No 426, p. 37 (2004).Suche in Google Scholar
52. Bokhari, T. H., Akbar, M. U., Roohi, S., Hina, S., Sohaib, M., Rizvi, F. A.: Synthesis, characterization and biological evaluation of 99mTc-labeled Mitomycin C. J. Radioanal. Nucl. Chem. 303(3), 1779 (2015).10.1007/s10967-014-3743-4Suche in Google Scholar
53. Rashed, R., Tariq, S., Naqvi, S. A. R., Gillani, S. J. H., Rizvi, F. A., Sajid, M., Rasheed, S.: 177Lu-5-Fluorouracil a potential theranostic radiopharmaceutical: radiosynthesis, quality control, biodistribution and scintigraphy. J. Labelled. Comp. Radiopharm. 59(10), 398 (2016).10.1002/jlcr.3423Suche in Google Scholar PubMed
54. Rizvi, F. A., Naqvi, S. A. R., Mehdi, M., Roohi, S., Zahoor, A. F., Khan, Z. A., Rasheed, R.: Synthesis, quality control and biodistribution of techneium-99m triamcinolone acetonide (99mTc-TA) complex: an inflammation tracer agent. J. Chil. Chem. Soc. 62(1), 3345 (2017).10.4067/S0717-97072017000100008Suche in Google Scholar
55. Riaz, R., Riaz, M., Mahmood, I., Nadeem, R., Ahmad, I., Abbas, M., Rizvi, F. A., Ishaque, I., Suleman, M.: To evaluate the effect of chemically modified Dalbergia sissoo (Sheesham) leaves on biosorption of Pb (II) from aqueous solution. Oxid. Commun. 40(2), 898 (2017).Suche in Google Scholar
56. Kumar, R. R., Dhawan, D. K., Malhotra, A.: Synthesis, characterization and radiolabeling of Bortezomib with 99mTc. Eur. J. Biophys. 3(3), 11 (2015).10.11648/j.ejb.s.2015030301.12Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Determination of the stability constants of Pu(VI) carbonate complexes by capillary electrophoresis coupled with inductively coupled plasma mass spectrometer
- Sequential analysis of uranium and plutonium in environmental matrices by extractive liquid scintillation spectrometry
- A review of the analytical methodology to determine Radium-226 and Radium-228 in drinking waters
- Redox sorption of Ce(III)/Ce(IV) on potassium bismuthate
- Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging
- Synthesis of isotope – labeled selective PDE5 inhibitor sildenafil (UK 92480-10)
- Effect of gamma irradiation on the structure characteristics and mass attenuation coefficient of MgO nanoparticles
- Evaluation of gamma-ray attenuation properties of lithium borate glasses doped with barite, limonite and serpentine
- Corrigendum
- Corrigendum to: Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production
- Corrigendum to: Definitions of radioisotope thick target yields
Artikel in diesem Heft
- Frontmatter
- Determination of the stability constants of Pu(VI) carbonate complexes by capillary electrophoresis coupled with inductively coupled plasma mass spectrometer
- Sequential analysis of uranium and plutonium in environmental matrices by extractive liquid scintillation spectrometry
- A review of the analytical methodology to determine Radium-226 and Radium-228 in drinking waters
- Redox sorption of Ce(III)/Ce(IV) on potassium bismuthate
- Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging
- Synthesis of isotope – labeled selective PDE5 inhibitor sildenafil (UK 92480-10)
- Effect of gamma irradiation on the structure characteristics and mass attenuation coefficient of MgO nanoparticles
- Evaluation of gamma-ray attenuation properties of lithium borate glasses doped with barite, limonite and serpentine
- Corrigendum
- Corrigendum to: Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production
- Corrigendum to: Definitions of radioisotope thick target yields