Startseite Naturwissenschaften The vital use of isocyanide-based multicomponent reactions (MCR) in chemical synthesis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The vital use of isocyanide-based multicomponent reactions (MCR) in chemical synthesis

  • Reagan Lehlogonolo Mohlala ORCID logo EMAIL logo und Elena Mabel Coyanis
Veröffentlicht/Copyright: 23. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Multicomponent (MCRs) reactions are classified as one-pot reaction where more than two starting materials are employed to form a single product that contains the building blocks of the starting components. MCRs are considered a convenient approach in synthetic chemistry and have many advantages over the traditional one or two-component reaction, by reducing the number of sequential multiple steps required and often producing better yields. This chapter dissects the use of isocyanide-based MCRs and the elegant chemistry that they offer to build useful scaffolds in the chemical synthetic field. In addition MCRs are considered as one of the recognisable options for increasing “greenness” during the synthesis of pharmaceutical and industrial products.


Corresponding author: Reagan Lehlogonolo Mohlala, Advanced Material Division, Mintek Inc, 200 Malibongwe Street, Randburg, 2194, Randburg, Gauteng, 2125, South Africa; and Chemistry, Mintek Inc, Randburg, South Africa, E-mail:

Funding source: Mintek

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Ruijter, E, Scheffelaar, R, Orru, RVA. Multicomponent reaction design in the quest formolecular complexity and diversity. Angew Chem Int Ed 2011;50:6234–46. https://doi.org/10.1002/anie.201006515.Suche in Google Scholar PubMed

2. Ganem, B. Strategies for innovation in multicomponent reaction design. Acc Chem Res 2009;42:463–72. https://doi.org/10.1021/ar800214s.Suche in Google Scholar PubMed PubMed Central

3. Dömling, A. Solid acid catalysis using ion-exchange resins. Chem Rev 2006;106:17–89. https://doi.org/10.1021/cr0505728.Suche in Google Scholar PubMed

4. Rocha, RO, Rodrigues, MO, Neto, BAD. Review on the Ugi multicomponent reaction mechanism and the use of fluorescent derivatives as functional chromophores. ACS Omega 2020;5:972–9. https://doi.org/10.1021/acsomega.9b03684.Suche in Google Scholar PubMed PubMed Central

5. Ugi, I, Steinbrückner, C. Chem ber (Ugi, isonitrile II). Chem Ber 1961;94:734–42. https://doi.org/10.1002/cber.19610940323.Suche in Google Scholar

6. Passerini, M, Simone, L. Sopra gli isonitrili (I). Composto del p-isonitril-azobenzolo con acetone ed acido acetico. Gazz Chim Ital 1921;51:126–9.Suche in Google Scholar

7. Passerini, M, Ragni, G. Isonitrili. XIX: reazioni con aldeidi, acidi chetoni. Gazz Chim Ital 1931;61:964–9.Suche in Google Scholar

8. Biginelli, P. Ueber aldehyduramide des acetessigäthers. Ber Dtsch Chem Ges 1891;24:1317–9. https://doi.org/10.1002/cber.189102401228.Suche in Google Scholar

9. Hantzsch, A, Liebigs, A. Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Chem 1882;215:1–82. https://doi.org/10.1002/jlac.18822150102.Suche in Google Scholar

10. Strecker, D. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Ann. Chem. Pharm 1850;75:27–45. https://doi.org/10.1002/jlac.18500750103.Suche in Google Scholar

11. Mannich, C, Krösche, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch Pharmazie 1912;250:647–67. https://doi.org/10.1002/ardp.19122500151.Suche in Google Scholar

12. Ugi, I, Meyr, R, Fetzer, U, Steinbrückner, C. Versammlungsberichte. Angew. Chem 1959;71:373–88.10.1002/ange.19590711110Suche in Google Scholar

13. Ugi, I, Dömling, A, Hörl, W. Multicomponent reactions in organic-chemistry. Endeavour 1994;18:115–22. https://doi.org/10.1016/s0160-9327(05)80086-9.Suche in Google Scholar

14. Dömling, A, Ugi, I. Multicomponent reactions with isocyanides. Angew Chem, Int Ed 2000;39:3168–210. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::aid-anie3168>3.0.co;2-u.10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-USuche in Google Scholar

15. Bode, ML, Gravestock, D, Rousseau, AL. Synthesis, reactions and uses of isocyanides in organic synthesis. An update. Org Prep Proced Int 2016;48:89–221. https://doi.org/10.1080/00304948.2016.1138072.Suche in Google Scholar

16. Rudick, JG, Shaabani, S, Dömling, A. Editorial: isocyanide-based multicomponent reactions. Front Chem 2020;7:918. https://doi.org/10.3389/fchem.2019.00918.Suche in Google Scholar

17. Neochoritis, CG, Zarganes-Tzitzikas, T, Katsampoxaki-Hodgetts, K, Dömling, A. Multicomponent reactions: “kinderleicht”. J Chem Educ 2020;97:3739–45. https://doi.org/10.1021/acs.jchemed.0c00290.Suche in Google Scholar

18. Vishwanatha, TM, Kurpiewska, K, Kalinowska-Tłusćik, J, Dömling, A. Cysteine isocyanide in multicomponent reaction: synthesis of peptido-mimetic 1,3-azoles. J Org Chem 2017;82:9585–94. https://doi.org/10.1021/acs.joc.7b01615.Suche in Google Scholar

19. Dömling, A. Innovations and inventions: why was the Ugi reaction discovered only 37 years after the passerini reaction? J Org Chem 2022. https://doi.org/10.1021/acs.joc.2c00792.Suche in Google Scholar

20. Wu, L, Liu, Y, Li, Y. Synthesis of spirooxindole-O-naphthoquinone-tetrazolo[1,5-a]pyrimidine hybrids as potential anticancer agents. Molecules 2018;23:1–9. https://doi.org/10.3390/molecules23092330.Suche in Google Scholar

21. Paprocki, D, Madej, A, Koszelewski, D, Brodzka, A, Ostaszewski, R. Multicomponent reactions accelerated by aqueous micelles. Front Chem 2018;6:502. https://doi.org/10.3389/fchem.2018.00502.Suche in Google Scholar

22. Rambhau, PG, Ambarsing, PR. A review on recent progress in multicomponent reactions of pyrimidine synthesis. Drug Invent Today 2013;5:148–52. https://doi.org/10.1016/j.dit.2013.05.010.Suche in Google Scholar

23. Yang, X, Wu, L. Synthesis of novel 1,4-naphthoquinones possessing indole scaffolds using In(OTf)3 in solvent-free conditions. Molecules 2018;23:1–8. https://doi.org/10.3390/molecules23081954.Suche in Google Scholar PubMed PubMed Central

24. Shahedi, M, Habibi, Z, Yousefi, M, Braskd, J, Mohammadi, M. Improvement of biodiesel production from palm oil by co-immobilization of thermomyces lanuginosa lipase and Candida Antarctica lipase B: optimization using response surface methodology. Int J Biol Macromol 2021;170:490–502. https://doi.org/10.1016/j.ijbiomac.2020.12.181.Suche in Google Scholar PubMed

25. Tang, X, Zhu, S, Ma, Y, Wen, R, Cen, L, Gong, P, et al.. A simple and efficient synthesis of highly substituted indeno[1,2-b]pyrrole and acenaphtho[1,2-b]pyrrole derivatives by tandem three-component reactions. Molecules 2018;23:1–10. https://doi.org/10.3390/molecules23113031.Suche in Google Scholar PubMed PubMed Central

26. Mohlala, RL, Coyanis, EM, Fernandes, MA, Bode, ML. Catalyst-free synthesis of novel 1,5-benzodiazepines and 3,4-dihydroquinoxalines using isocyanide-based one-pot, three- and fourcomponent reaction. RSC Adv 2021;11:24466. https://doi.org/10.1039/d1ra04444c.Suche in Google Scholar PubMed PubMed Central

27. Cores, A, Clerigué, J, Orocio-Rodríguez, E, Menéndez, JC. Multicomponent reactions for the synthesis of active pharmaceutical ingredients. Pharmaceuticals 2022;15:1009. https://doi.org/10.3390/ph15081009.Suche in Google Scholar PubMed PubMed Central

28. Duthaler, RO. Recent developments in the stereoselective synthesis of α aminoacids. Tetrahedron 1994;50:1539–650. https://doi.org/10.1016/s0040-4020(01)80840-1.Suche in Google Scholar

29. Williams, RM, Hendrix, JA. Asymmetric synthesis of arylglycines. Chem Rev 1992;92:889–917. https://doi.org/10.1021/cr00013a007.Suche in Google Scholar

30. Groger, H. Catalytic enantioselective strecker reactions and analogous syntheses. Chem Rev 2003;103:2795–827. https://doi.org/10.1021/cr020038p.Suche in Google Scholar PubMed

31. Das, BC, Anguiano, J, Mahalingam, SM. Design and synthesis of α-aminonitrile-functionalized novel retinoids. Tetrahedron Lett 2009;50:5670–2. https://doi.org/10.1016/j.tetlet.2009.07.119.Suche in Google Scholar

32. Arasappan, A, Venkatraman, S, Padilla, AI, Wu, W, Meng, T, Jin, Y, et al.. Practical and efficient method for amino acid derivatives containing β-quaternary center: application toward synthesis of hepatitis C virus NS3 serine protease inhibitors. Tetrahedron Lett 2007;48:6343–7. https://doi.org/10.1016/j.tetlet.2007.07.002.Suche in Google Scholar

33. Razafindrabe, CR, Aubry, S, Bourdon, B, Andriantsiferana, M, Pellet-Rostaing, S, Lemaire, M. Synthesis of (±)-phthalascidin 650 analogue: new synthetic route to (±)-phthalascidin 622. Tetrahedron 2010;66:9061–6. https://doi.org/10.1016/j.tet.2010.08.053.Suche in Google Scholar

34. Iwanami, K, Seo, H, Choi, JC, Sakakura, T, Yasuda, H. Al-MCM-41 catalyzed three-component Strecker-type synthesis of α-aminonitriles. Tetrahedron 2010;66:1898–901. https://doi.org/10.1016/j.tet.2010.01.001.Suche in Google Scholar

35. Kouznetsov, VV, Hernandez, JG. Nanostructured silicate catalysts for environmentally benign Strecker-type reactions: status quo and quo vadis. RSC Adv 2022;12:20807. https://doi.org/10.1039/d2ra03102g.Suche in Google Scholar PubMed PubMed Central

36. Kantam, ML, Mahendar, K, Sreedhar, B, Choudary, BM. Synthesis of α-amino nitriles through Strecker reaction of aldimines and ketoimines by using nanocrystalline magnesium oxide. Tetrahedron 2008;64:3351–60. https://doi.org/10.1016/j.tet.2008.01.128.Suche in Google Scholar

37. Zhang, GW, Zheng, DH, Nie, J, Wang, T, Ma, JA. Brønsted acid-catalyzed efficient Strecker reaction of ketones, amines and trimethylsilyl cyanide. Org Biomol Chem 2010;8:1399–405. https://doi.org/10.1039/b924272d.Suche in Google Scholar PubMed

38. Jarusiewicz, J, Choe, Yoo, SY, Park, CP, Jung, KW. Efficient three-component strecker reaction of aldehydes/ketones via NHC-amidate palladium(II) complex catalysis. Org Chem 2009;74:2873–6. https://doi.org/10.1021/jo900163w.Suche in Google Scholar PubMed PubMed Central

39. Prakash, GKS, Mathew, T, Panja, C, Alconcel, S, Vaghoo, H, Do, C, et al.. Gallium (III) triflate catalyzed efficient Strecker reaction of ketones and their fluorinated analogs. Proc Natl Acad Sci USA 2007;104:3703–6. https://doi.org/10.1073/pnas.0611316104.Suche in Google Scholar PubMed PubMed Central

40. Wen, Y, Xiong, Y, Chang, L, Huang, J, Liu, X, Feng, X. Chiral bisformamides as effective organocatalysts for the asymmetric one-pot, three-component strecker reaction. J Org Chem 2007;72:7715–9. https://doi.org/10.1021/jo701307f.Suche in Google Scholar PubMed

41. Neto, BAD, Rocha, RO, Rodrigues, MO. Catalytic approaches to multicomponent reactions: a critical review and perspectives on the roles of catalysis. Molecules 2022;27:132. https://doi.org/10.3390/molecules27010132.Suche in Google Scholar PubMed PubMed Central

42. Eppinger, E, Gröning, JAD, Stolz, A. Chemoenzymatic enantioselective synthesis of phenylglycine and phenylglycine amide by direct coupling of the Strecker synthesis with a nitrilase reaction. Front. Catal. 2022;2:952944. https://doi.org/10.3389/fctls.2022.952944.Suche in Google Scholar

43. Knoevenagel, E, Fries, A. Synthesen in der Pyridinreihe. Ueber eine Erweiterung der Hantzsch’schen Dihydropyridinsynthese. Ber Dtsch Chem Ges 1898;31:761–7. https://doi.org/10.1002/cber.189803101157.Suche in Google Scholar

44. Bossert, F, Vater, W. Dihydropyridine, eine neue Gruppe Stark wirksamer Coronar-therapeutika. Naturwissenschaften 1971;58:578.https://doi.org/10.1007/bf00598745.Suche in Google Scholar

45. Lentz, F, Hemmer, M, Reiling, N, Hilgeroth, A. Discovery of novel N-phenyl 1,4-dihydropyridines with a dual mode of antimycobacterial activity. Bioorg Med Chem Lett 2016;26:5896–8. https://doi.org/10.1016/j.bmcl.2016.11.010.Suche in Google Scholar PubMed

46. Choi, SJ, Cho, JH, Im, I, Lee, SD, Jang, JY, Oh, YM, et al.. Design and synthesis of 1,4-dihydropyridine derivatives as BACE-1 inhibitors. Eur J Med Chem 2010;45:2578–90. https://doi.org/10.1016/j.ejmech.2010.02.046.Suche in Google Scholar PubMed

47. Osin, K, Rostoka, E, Isajevs, S, Sokolovska, J, Sjakste, T, Sjakste, N. Effects of an antimutagenic 1,4-dihydropyridine AV-153 on expression of nitric oxide synthases and DNA repair-related enzymes and genes in kidneys of rats with a streptozotocin model of diabetes mellitus. Basic Clin Pharmacol Toxicol 2016;119:458–63. https://doi.org/10.1111/bcpt.12617.Suche in Google Scholar PubMed

48. Otokesh, S, Koukabi, N, Kolvari, E, Amoozadeh, A, Malmir, M, Azhari, S. A solvent-free synthesis of polyhydroquinolines via hantzsch multicomponent condensation catalyzed by nanomagnetic-supported sulfonic acid. S Afr J Chem 2015;68:15–20. https://doi.org/10.17159/0379-4350/2015/v68a3.Suche in Google Scholar

49. Heravi, MM, Hosseini, M, Oskooie, HA, Baghernejad, B, Farzaneh, F. Efficient synthesis of polyhydroquinolines via the hantzsch reaction using iron loaded mesoporous materials. Chin J Chem 2010;28:2045–8. https://doi.org/10.1002/cjoc.201090341.Suche in Google Scholar

50. Saikh, F, De, R, Ghosh, S. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by cupric bromide under mild heterogeneous condition. Tetrahedron Lett 2014;55:6171–4. https://doi.org/10.1016/j.tetlet.2014.09.025.Suche in Google Scholar

51. Paul, S, Sharma, S, Gupta, M, Choudhary, D, Gupta, R. Oxidative aromatization of hantzsch 1,4-dihydropyridines by SiOz/PzOs-SeOz under mild and heterogeneous conditions. Bull Kor Chem Soc 2007;28:336–8.10.1002/chin.200728133Suche in Google Scholar

52. Hashemi, MM, Ahmadibeni, Y, Ghafuri, H. Aromatization of Hantzsch 1,4-dihydropyridines by hydrogen peroxide in the presence of cobalt(II) acetate. Monatsh Chem 2003;134:107–10. https://doi.org/10.1007/s00706-002-0487-6.Suche in Google Scholar

53. Bai, CB, Wang, NX, Wang, YJ, Lan, XW, Xing, Y, Wen, JL. A new oxidation system for the oxidation of Hantzsch-1,4-dihydropyridines and polyhydroquinoline derivatives under mild conditions. RSC Adv 2015;5:100531–4. https://doi.org/10.1039/c5ra20977c.Suche in Google Scholar

54. Rahimi, J, Niksefat, M, Heidari, M, Naderi, M, Abbasi, H, Ijdani, MT, et al.. Ammonium metavanadate (NH4VO3): a highly efficient and eco-friendly catalyst for one-pot synthesis of pyridines and 1,4-dihydropyridines. Sci Rep 2022;12:13687. https://doi.org/10.1038/s41598-022-17378-7.Suche in Google Scholar PubMed PubMed Central

55. Anastas, P, Eghbali, N. Green chemistry: principles and practice. Chem Soc Rev 2010;39:301–12. https://doi.org/10.1039/B918763B.Suche in Google Scholar

56. Sarma, P, Saikia, S, Borah, R. Studies on –SO3H functionalized Brønsted acidic imidazolium ionic liquids (ILs) for one-pot, two-step synthesis of 2-styrylquinolines. Synth Commun 2016;46:1187–96. https://doi.org/10.1080/00397911.2016.1193754.Suche in Google Scholar

57. Liu, XB, Lu, M, Lu, TT, Gu, GL. Functionalized ionic liquid Promoted aza-michael addition of aromatic amines. J Chin Chem Soc 2010;57:1221–6. https://doi.org/10.1002/jccs.201000180.Suche in Google Scholar

58. Hu, YL, Liu, XB, Fang, D. Efficient and convenient oxidation of sulfides to sulfones using H2O2 catalyzed by V2O5 in ionic liquid [C12mim] [HSO4]. Catal Sci Technol 2014;4:38–42. https://doi.org/10.1039/c3cy00719g.Suche in Google Scholar

59. Liu, X, Liu, B. Hantzsch reaction starting directly from alcohols through a tandem oxidation process. J Chem 2017;2017:5646908. https://doi.org/10.1155/2017/5646908.Suche in Google Scholar

60. Katritzky, AR, Ostercamp, DL, Yousaf, TI. The mechanism of the bantzscb pyridine synthesis: a study by “8 and 13c NMR spectroscopy+”. Tetrahedron 1986;42:5729–38. https://doi.org/10.1016/s0040-4020(01)88178-3.Suche in Google Scholar

61. Ajani, OO, Isaac, JT, Owoeye, TF, Akinsiku, AA. Exploration of the chemistry and biological properties of pyrimidine as a privilege pharmacophore in therapeutics. Int J Biol Chem 2015;9:148–77. https://doi.org/10.3923/ijbc.2015.148.177.Suche in Google Scholar

62. Kappe, CO. Review biologically active dihydropyrimidones of the Biginelli-type-a literature survey. Eur J Med Chem 2000;35:1043–52. https://doi.org/10.1016/s0223-5234(00)01189-2.Suche in Google Scholar PubMed

63. Sepehri, S, Perez, SH, Fassihi, A. Hantzsch-type dihydropyridines and biginelli-type tetra-hydropyrimidines: a review of their chemotherapeutic activities. J Pharm Pharmaceut Sci 2015;18:1–52. https://doi.org/10.18433/j3q01v.Suche in Google Scholar PubMed

64. Kappe, CO. A reexamination of the mechanism of the biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate 1. J Org Chem 1997;62:7201–4. https://doi.org/10.1021/jo971010u.Suche in Google Scholar PubMed

65. Alvim, HGO, da Silva Júnior, EN, Neto, BAD. What do we know about multicomponent reactions? Mechanisms and trends for the biginelli, hantzsch, mannich, passerini and ugi MCRs. RSC Adv 2014;4:54282–99. https://doi.org/10.1039/c4ra10651b.Suche in Google Scholar

66. Puripat, M, Ramozzi, R, Hatanaka, M, Parasuk, W, Parasuk, V, Morokuma, K. The biginelli reaction is a Urea-catalyzed organocatalytic multicomponent reaction. J Org Chem 2015;80:6959–67. https://doi.org/10.1021/acs.joc.5b00407.Suche in Google Scholar PubMed

67. Kobayashi, S, Ishitani, H. Catalytic enantioselective addition to imines. Chem Rev 1999;99:1069–94. https://doi.org/10.1021/cr980414z.Suche in Google Scholar PubMed

68. Speckamp, WN, Moolenaar, MJ. New developments in the chemistry of N-acyliminium ions and related intermediates. Tetrahedron 2000;56:3817–56. https://doi.org/10.1016/s0040-4020(00)00159-9.Suche in Google Scholar

69. Bur, SK, Martin, SF. Vinylogous Mannich reactions: selectivity and synthetic utility. Tetrahedron 2001;57:3221–42. https://doi.org/10.1016/s0040-4020(01)00035-7.Suche in Google Scholar

70. Hayashi, Y, Tsuboi, W, Shoji, M, Suzuki, N. Application of high pressure induced by water-freezing to the direct catalytic asymmetric three-component List-Barbas-Mannich reaction. J Am Chem Soc 2003;125:11208–9. https://doi.org/10.1021/ja0372513.Suche in Google Scholar PubMed

71. Joshi, NS, Whitaker, LR, Francis, MB. A three-component mannich-type reaction for selective tyrosine bioconjugation. J Am Chem Soc 2004;126:15942–3. https://doi.org/10.1021/ja0439017.Suche in Google Scholar PubMed

72. Lou, S, Taoka, BM, Ting, A, Schaus, SE. Asymmetric mannich reactions of β-keto esters with acyl imines catalyzed by cinchona alkaloids. J Am Chem Soc 2005;127:11256–7. https://doi.org/10.1021/ja0537373.Suche in Google Scholar PubMed

73. Ishitani, H, Ueno, M, Kobayashi, S. Catalytic enantioselective mannich-type reactions Using a novel chiral zirconium catalyst. J Am Chem Soc 1997;119:7153–4. https://doi.org/10.1021/ja970498d.Suche in Google Scholar

74. Kobayashi, S, Hamada, T, Manabe, K. The catalytic asymmetric Mannich-type reactions in aqueous media. J Am Chem Soc 2002;124:5640–1. https://doi.org/10.1021/ja026094p.Suche in Google Scholar

75. Cordova, A. The direct catalytic asymmetric mannich reaction. Acc Chem Res 2004;37:102–12. https://doi.org/10.1021/ar030231l.Suche in Google Scholar

76. Arend, M, Westermann, B, Risch, N. Modern variants of the mannich reaction. Angew Chem Int Ed 1998;37:1044–70. https://doi.org/10.1002/(sici)1521-3773(19980504)37:8<1044::aid-anie1044>3.0.co;2-e.10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-ESuche in Google Scholar

77. Davis, FA, Zhang, Y, Anilkumar, G. Asymmetric synthesis of the quinolizidine alkaloid (-)-epimyrtine with intramolecular mannich cyclization and N-sulfinyl δ-amino β-ketoesters. J Org Chem 2003;68:8061–4. https://doi.org/10.1021/jo030208d.Suche in Google Scholar

78. Jun, D, Dan, X, Tengrui, Y, Juan, L, Tao, C, Zhihui, S. Chiral primary amine catalysis for asymmetric mannich reactions of aldehydes with ketimines: stereoselectivity and reactivity. Angew Chem 2017;129:12871–5. https://doi.org/10.1002/ange.201706304.Suche in Google Scholar

79. Kuwano, S, Suzuki, T, Hosaka, Y, Ara, TA. A chiral organic base catalyst with halogen-bonding-donor functionality: asymmetric mannich reactions of malononitrile with N-Boc aldimines and ketimines. Commun Now 2018;54:3847–50. https://doi.org/10.1039/c8cc00865e.Suche in Google Scholar

80. Xi-Qiang, H, Da-Ming, D. Recent advances in squaramide-catalyzed asymmetric mannich reactions. Adv Synth Catal 2020;21:4487–512. https://doi.org/10.1002/adsc.202000842.Suche in Google Scholar

81. Yanagisawa, A, Saito, H, Harada, M, Arai, T. Mannich-type reaction using alkenyl trichloroacetates catalyzed by dibutyltin dimethoxide. Adv Synth Catal 2005;347:1517–22. https://doi.org/10.1002/adsc.200505156.Suche in Google Scholar

82. Kureshy, RI, Agrawal, S, Saravan, S, Khan, NH, Shah, AK, Abdi, SHR, et al.. Direct mannich reaction mediated by Fe(Cp)2PF6 under solvent-free conditions. Tetrahedron Lett 2010;51:489–94. https://doi.org/10.1016/j.tetlet.2009.11.022.Suche in Google Scholar

83. Uraguchi, D, Tereda, M. Chiral brønsted acid-catalyzed direct mannich reactions via electrophilic activation. J Am Chem Soc 2004;126:5356–7. https://doi.org/10.1021/ja0491533.Suche in Google Scholar PubMed

84. Manabe, K, Kobayashi, S. Mannich-type reactions of aldehydes, amines, and ketones in a colloidal dispersion system created by a Brønsted acid− surfactant-combined catalyst in water. Org Lett 1999;1:1965–7. https://doi.org/10.1021/ol991113u.Suche in Google Scholar

85. Fang, D, Gong, K, Zhang, DZ, Liu, ZL. One-pot, three-component mannich-type reaction catalyzed by functionalized ionic liquid. Monatsh Chem 2009;140:1325–9. https://doi.org/10.1007/s00706-009-0182-y.Suche in Google Scholar

86. Gong, K, Fang, D, Wang, HL, Liu, ZL. Basic functionalized ionic liquid catalyzed One-pot mannich-type reaction: three component synthesis of β-amino carbonyl compounds. Monatsh Chem 2007;138:1195–8. https://doi.org/10.1007/s00706-007-0767-2.Suche in Google Scholar

87. Jafari, AA, Moradgholi, F, Tamaddon, F. Pronounced catalytic effect of a micellar solution of sodium dodecylsulfate (SDS) upon a three-component reaction of aldehydes, amines, and ketones under neutral conditions. Eur J Org Chem 2009:1249–55. https://doi.org/10.1002/ejoc.200801037.Suche in Google Scholar

88. Ooi, T, Kameda, M, Fujii, JI, Maruoka, K. Catalytic asymmetric synthesis of a nitrogen analogue of dialkyl tartrate by direct mannich reaction under phase-transfer conditions. Org Lett 2004;6:7–9. https://doi.org/10.1021/ol049215u.Suche in Google Scholar PubMed

89. Guchhait, T, Roy, S, Jena, P. Cover feature: mannich reaction: an alternative synthetic approach for various pyrrole-based anion receptors and chelating ligands. Eur J Org Chem 2022;24:e202200578.10.1002/ejoc.202200578Suche in Google Scholar

90. Hozien, ZA, EL-Mahdy, AFM, Markeb, AA, Alia, LSA, El-Sherief, HAH. Synthesis of schiff and mannich bases of new s-triazole derivatives and their potential applications for removal of heavy metals from aqueous solution and as antimicrobial agents. RSC Adv 2020;10:20184–94. https://doi.org/10.1039/d0ra02872j.Suche in Google Scholar PubMed PubMed Central

91. Banfi, L, Riva, R. Organic reactions. In: Charette, AB, editor. Hoboken City, NJ: John Wiley & Sons, Inc.; 2005, vol 65:1–140 pp. The Passerini reaction. 2005, 1–140.10.1002/0471264180.or065.01Suche in Google Scholar

92. Maeda, S, Komagawa, S, Uchiyama, M, Morokuma, K. Finding reaction pathways for multicomponent reactions: the passerini reaction is a four-component reaction. Angew Chem Int Ed 2011;50:644–9. https://doi.org/10.1002/anie.201005336.Suche in Google Scholar PubMed

93. Ramozzi, R, Morokuma, KJ. Revisiting the passerini reaction mechanism: existence of the nitrilium, organocatalysis of its formation, and solvent effect. Org Chem 2015;80:5652–7. https://doi.org/10.1021/acs.joc.5b00594.Suche in Google Scholar PubMed

94. Ugi, I, Meyr, R, Isonitrile, V. Erweiterter anwendungsbereich der Passerini-reaktion. Chem Ber 1961;94:2229–33. https://doi.org/10.1002/cber.19610940844.Suche in Google Scholar

95. Zahoor, AF, Thies, S, Kazmaier, U. A straightforward approach towards combined-amino and-hydroxy acids based on Passerini reactions. Beilstein J Org Chem 2011;7:1299–303. https://doi.org/10.3762/bjoc.7.151.Suche in Google Scholar PubMed PubMed Central

96. Karimi, B, Farhangi, E. One-Pot oxidative Passerini reaction of alcohols using a magnetically recyclable TEMPO under metal-and halogen-free conditions. Adv Synth Catal 2013;355:508–16.10.1002/adsc.201200449Suche in Google Scholar

97. Basso, A, Banfi, L, Garbarino, S, Riva, R. Ketene three-component reaction: a metal-free multicomponent approach to stereo defined. Angew Chem Int Ed 2013;52:2096–9. https://doi.org/10.1002/anie.201209399.Suche in Google Scholar PubMed

98. Neo, AG, Carrillo, RM, Delgado, J, Marcaccini, S, Marcos, CF. A multicomponent approach to the synthesis of 1,3-dicarbonylic compounds. Mol Divers 2011;15:529–39. https://doi.org/10.1007/s11030-010-9277-y.Suche in Google Scholar PubMed

99. Kusebauch, U, Beck, B, Messer, K, Herdtweck, E, Dömling, A. Massive parallel catalyst screening: toward asymmetric MCRs. Org Lett 2003;5:4021–4. https://doi.org/10.1021/ol035010u.Suche in Google Scholar PubMed

100. Wang, SX, Wang, M, Wang, DX, Zhu, J. Passerini three-component reaction. Angew Chem 2008;120:394–7. https://doi.org/10.1002/ange.200704315.Suche in Google Scholar

101. Andreana, PR, Liu, CC, Schreiber, SL. Stereochemical control of the passerini reaction. Org Lett 2004;6:4231–3. https://doi.org/10.1021/ol0482893.Suche in Google Scholar PubMed PubMed Central

102. Zhang, J, Lin, SX, Cheng, DJ, Liu, XY, Tan, B. Phosphoric acid-catalyzed asymmetric classic passerini reaction. J Am Chem Soc 2015;137:14039–42. https://doi.org/10.1021/jacs.5b09117.Suche in Google Scholar PubMed

103. Tripolitsiotis, NP, Thomaidi, M, Neochoritis, CG. The Ugi three-component reaction; a valuable tool in modern organic synthesis. Eur J Org Chem 2020;65:25–54. https://doi.org/10.1002/ejoc.202001157.Suche in Google Scholar

104. Mroczkiewicz, M, Ostaszewski, R. A new and general method for the synthesis of tripeptide aldehydes based on the multi-component Ugi reaction. Tetrahedron 2009;65:4025–34. https://doi.org/10.1016/j.tet.2009.03.018.Suche in Google Scholar

105. Che, C, Li, S, Jiang, X, Quan, J, Lin, S, Yang, Z. One-pot syntheses of chromeno[3,4- c ]pyrrole-3,4-diones via Ugi-4CR and intramolecular Michael addition. Org Lett 2010;12:4682–5. https://doi.org/10.1021/ol1020477.Suche in Google Scholar PubMed

106. Mossetti, R, Pirali, T, Tron, GC. Synthesis of Passerini-Ugi hybrids by a four-component reaction using the glycolaldehyde dimer. J Org Chem 2009;74:4890–2. https://doi.org/10.1021/jo9005969.Suche in Google Scholar PubMed

107. Ugi, I, Steinbrückner, C. Über ein neues Kondensations Prinzip. Angew Chem 1960;72:267–8. https://doi.org/10.1002/ange.19600720709.Suche in Google Scholar

108. Ramezanpour, S, Balalaie, S, Rominger, F, Bijanzadeh, HR. An efficient and diastereoselective synthesis of hydrazino amides via a novel one-pot three-component reaction. Tetrahedron 2013;69:3480–5. https://doi.org/10.1016/j.tet.2013.02.056.Suche in Google Scholar

109. Shaabani, A, Keshipour, S, Shaabani, S, Mahyari, M. Zinc chloride catalyzed three-component Ugi reaction: synthesis of N-cyclohexyl-2-(2-hydroxyphenylamino)acetamide derivatives. Tetrahedron Lett 2012;53:1641–4. https://doi.org/10.1016/j.tetlet.2012.01.079.Suche in Google Scholar

110. Faggi, C, Garcıa-Valverde, M, Marcaccini, S, Menchi, G. Isolation of Ugi four-component condensation primary adducts: a straightforward route to isocoumarins. Org Lett 2010;12:788–91. https://doi.org/10.1021/ol9028622.Suche in Google Scholar PubMed

111. Van Leusen, AM, Wildeman, J, Oldenziel, OH. Chemistry of sulfonylmethyl isocyanides. 12. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon,nitrogen double bonds. Synthesis of 1,5-disubstituted and 1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides. J Org Chem 1977;42:1153–9. https://doi.org/10.1021/jo00427a012.Suche in Google Scholar

112. Sisko, J. A one-pot synthesis of 1-(2, 2, 6, 6-tetramethyl-4-piperidinyl)-4-(4-fluorophenyl)-5-(2-amino-4-pyrimidinyl)-imidazole: a potent inhibitor of P38 MAP kinase. J Org Chem 1998;63:4529–31. https://doi.org/10.1021/jo980248v.Suche in Google Scholar

113. De Moliner, FD, Hulme, CA. Van Leusen deprotection-cyclization strategy as a fast entry into two imidazoquinoxaline families. Tetrahedron Lett 2012;53:5787–90. https://doi.org/10.1016/j.tetlet.2012.08.072.Suche in Google Scholar PubMed PubMed Central

114. Sahoo, MK. Dimethyl acetylene dicarboxylate. Synlett 2007;13:2142–3. https://doi.org/10.1055/s-2007-984894.Suche in Google Scholar

115. Diels, O, Alder, K, Nienburg, H, Schmalbeck, O. Synthesen in der hydroaromatische reihe. Ann Chem 1931;490:243–57. https://doi.org/10.1002/jlac.19314900110.Suche in Google Scholar

116. Acheson, RM, Elmore, NF. Synthesen in der hydroaromatische Reihe. Adv Heterocycl Chem 1978;23:263–96.10.1016/S0065-2725(08)60844-2Suche in Google Scholar

117. Neochoritis, C, Eleftheriadis, N, Tsoleridis, CA, Stephanidou-Stephanatou, J. A thorough study on the reaction of DMAD with 1-arylaminoimidazole-2-thiones. Expeditious synthesis of imidazo [2, 1-b] [1, 3] thiazoles through a novel arylamino rearrangement. Tetrahedron 2010;66:709–14. https://doi.org/10.1016/j.tet.2009.11.056.Suche in Google Scholar

118. El-Sheref, EM, Brown, AB. Utility of acetylenedicarboxylate in organic synthesis. J Heterocycl Chem 2017;54:825–43. https://doi.org/10.1002/jhet.2697.Suche in Google Scholar

119. Bandrowski, E. Ueber acetylendicarbonsäure. Ber Dtsch Chem Ges 1877;10:838. https://doi.org/10.1002/cber.187701001231.Suche in Google Scholar

120. Winterfeldt, E, Schumann, D, Dillinger, HJ. Additionen an die dreifachbindung, XI. Struktur und reaktionen des 2:1-Adduktes aus Acetylendicarbonester und Isonitrilen. Chem Ber 1969;102:1656–64. https://doi.org/10.1002/cber.19691020530.Suche in Google Scholar

121. Mohlala, RL, Coyanis, EM, Fish, MQ, Fernandes, MA, Bode, ML. Synthesis of 6-membered-ring fused thiazine-dicarboxylates and thiazole-pyrimidines via one-pot three-component reactions. Molecules 2021;26:5493. https://doi.org/10.3390/molecules26185493.Suche in Google Scholar PubMed PubMed Central

122. Mohlala, RL, Coyanis, EM, Fernandes, MA, Bode, ML. Synthesis of highly functionalised 5-membered ring fused pyrimidine derivatives using an isocyanide-based one-pot, three component reaction. Tetrahedron Lett 2020;61:151796. https://doi.org/10.1016/j.tetlet.2020.151796.Suche in Google Scholar

123. Shaabani, A, Rezayan, AH, Ghasemi, S, Sarvary, A. A mild and efficient method for the synthesis of 2,5-dihydro-5-imino-2-methylfuran-3,4-dicarboxylates via an isocyanide-based multicomponent reaction. Tetrahedron Lett 2009;50:1456–8. https://doi.org/10.1016/j.tetlet.2009.01.069.Suche in Google Scholar

124. Shaabani, A, Ghadari, R, Sarvary, A, Rezayan, AH. Synthesis of highly functionalized bis(4H-chromene) and 4H-benzo[g]chromene derivatives via an isocyanide-based pseudo-five-component reaction. J Org Chem 2009;74:4372–4. https://doi.org/10.1021/jo9005427.Suche in Google Scholar PubMed

125. Shaabani, A, Soleimani, E, Khavasi, HR, Hoffmann, RD, Rodewald, UC, Pöttgen, R. An isocyanide-based three-component reaction: synthesis of fully substituted N-alkyl-2-triphenylphosphoranylidene glutarimides. Tetrahedron Lett 2006;47:5493–6. https://doi.org/10.1016/j.tetlet.2006.05.164.Suche in Google Scholar

126. Shaabani, A, Sarvary, A, Rezayan, AH, Keshipour, S. Synthesis of fully substituted pyrano[2,3-c]pyrazole derivatives via a multicomponent reaction of isocyanides. Tetrahedron 2009;65:3492–5. https://doi.org/10.1016/j.tet.2009.02.035.Suche in Google Scholar

127. Zangouei, M, Esmaeili, AA, Habibi, A, Fakhari, AR. Efficient synthesis of novel tricyclic fused pyranothiazolopyrimidine derivatives via isocyanide-based three-component reactions. Tetrahedron 2014;70:8619–23. https://doi.org/10.1016/j.tet.2014.09.048.Suche in Google Scholar

128. Esmaeili, AA, Zangouei, M, Fakhari, AR, Habibi, A. An efficient regioselective synthesis of highly functionalized 3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidines via an isocyanide-based three-component reaction. Tetrahedron Lett 2012;53:1351–3. https://doi.org/10.1016/j.tetlet.2012.01.005.Suche in Google Scholar

129. Hassanabadi, A, Mosslemin, MH, Anary-Abbasinejad, M, Koocheki, S. One-pot synthesis of highly functionalized 2H-pyrimido[1,2-a]benzimidazoles. Monatsh Chem 2013;144:227–30. https://doi.org/10.1007/s00706-012-0796-3.Suche in Google Scholar

130. Ghandi, M, Ghomi, AT, Kubicki, M. Synthesis of cyclopentadiene-fused chromanones via one-pot multicomponent reactions. J Org Chem 2013;78:2611–6. https://doi.org/10.1021/jo302790y.Suche in Google Scholar PubMed

131. Zhao, LL, Wang, SY, Xu, XP, Ji, SJ. Dual 1,3-dipolar cycloaddition of carbon dioxide: two C=O bonds of CO2 react in one reaction. Chem Commun 2013;49:2569–71. https://doi.org/10.1039/c3cc38526d.Suche in Google Scholar PubMed

132. Yavari, I, Sanaeishoar, T, Azad, L. Mendeleev communications solvent-free synthesis of functionalized 5-imino-2,5-dihydrofurans from isocyanides, activated acetylenes and alkyl cyanoformates. Mendeleev Commun 2011;21:229–30. https://doi.org/10.1016/j.mencom.2011.07.020.Suche in Google Scholar

133. Yavari, I, Mokhtarporyani-Sanandaj, A, Moradi, L, Mirzaei, A. Reaction of benzoyl chlorides with Huisgen’s zwitterion: synthesis of functionalized 2,5-dihydro-1H-pyrroles and tetrasubstituted furans. Tetrahedron 2008;64:5221–5. https://doi.org/10.1016/j.tet.2008.03.044.Suche in Google Scholar

134. Hazeri, N, Maghsoodlou, MT, Habibi-Khorassani, SM, Marandi, G, Khandan-Barani, K, Ziyaadini, M, et al.. Synthesis of novel 2-pyridyl-substituted 2,5-dihydro-2-imino- and 2-amino- furan derivatives via a three component condensation of alkyl isocyanides and acetylenic esters with di-(2-pyridyl) ketone or 2-pyridinecarboxaldehyde. ARKIVOC 2007;i:173–9. https://doi.org/10.3998/ark.5550190.0008.119.Suche in Google Scholar

135. Esmaeili, AA, Vesalipoor, H. Reaction of isocyanides, dialkyl acetylenedicarboxylates, and α-keto lactones: Unexpected participation of an ester carbonyl group in the isocyanide-based three-component reaction. Synthesis 2009;10:1635–8. https://doi.org/10.1055/s-0028-1088042.Suche in Google Scholar

136. Nair, V, Vinod, AU, Abhilash, N, Menon, RS, Santhi, V, Varma, RL, et al.. Multicomponent reactions involving zwitterionic intermediates for the construction of heterocyclic systems: one pot synthesis of aminofurans and iminolactones. Tetrahedron 2003;59:10279–86. https://doi.org/10.1016/j.tet.2003.10.052.Suche in Google Scholar

137. Reimlinger, H, Jacquier, R, Daunis, J. Synthesen mit heterocyclischen Aminen, VI Weitere Synthesen von 7-Oxo-7.8-dihydro-S-triazolo [4.3-a] pyrimidinen. Chem Ber 1971;104:2702–8. https://doi.org/10.1002/cber.19711040908.Suche in Google Scholar

138. Shah, TA, Ahmad, Z, Mir, NA, Muneer, M, Rath, NP, Ahmad, M. One step synthesis of highly functionalized thiazolo[3,2-b] [1,2,4]triazole, triazolo[1,5-a]pyrimidine and triazolo[3,4-b] [1,3,4]thiadiazine. RSC Adv 2015;5:107931–7. https://doi.org/10.1039/c5ra21270g.Suche in Google Scholar

139. El-Borai, MA, Rizk, HF, Ibrahim, SA, El-Sayed, HF. Microwave assisted synthesis of fused thiazoles in multicomponent system and their in vitro antitumor, antioxidant, and antimicrobial activities. J Heterocycl Chem 2017;54:1031–41. https://doi.org/10.1002/jhet.2671.Suche in Google Scholar

140. Choudhary, G, Peddinti, RK. An efficient solvent-tuning approach for the rapid synthesis of thiazolidinone derivatives and the selective synthesis of 2-amino-4H-1,3-thiazin-4-one and dimethyl 3,3′-thiodiacrylates. Tetrahedron Lett 2014;55:5597–600. https://doi.org/10.1016/j.tetlet.2014.08.032.Suche in Google Scholar

141. Heravi, MM, Nami, N, Oskooie, HA, Hekmatshoar, R. Phosphorus, sulfur silicon relat. Elements 2006;181:87–91. https://doi.org/10.1080/104265090968992.Suche in Google Scholar

142. Cook, AG, Structure and physical properties of enamines. In: Cook, AG, editor. Enamines: synthesis, structure, and reactions, 2nd ed. New York: Dekker; 1988:384 p.Suche in Google Scholar

143. Paquette, LA, Shen, CC. Isodicyclopentadienes and related molecules. 49. Synthesis, static structure, and kinetic stability of a syn-sesquinorbornatriene. J Am Chem Soc 1990;112:1159–64. https://doi.org/10.1021/ja00159a041.Suche in Google Scholar

144. Kotha, S, Halder, S, Brahmachary, E. Synthesis of highly functionalized phenylalanine derivatives via cross-enyne metathesis reactions. Tetrahedron 2002;58:9203–8. https://doi.org/10.1016/s0040-4020(02)01178-x.Suche in Google Scholar

145. Rezvanian, A, Khodadadi, B, Tafresh, S. Use of dialkyl acetylenedicarboxylates in the multicomponent synthesis of heterocyclic structures. ChemistrySelect 2022;7:e202202360. https://doi.org/10.1002/slct.202202360.Suche in Google Scholar

Received: 2022-11-15
Accepted: 2023-01-25
Published Online: 2023-02-23

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Reviews
  3. Topology and applications of 2D Dirac and semi-Dirac materials
  4. Landscape ecological modeling to identify ecologically significant regions in Tumkur district, Karnataka
  5. Surfactants-surface active agents behind sustainable living
  6. Ecological footprint of poultry production and effect of environment on poultry genes
  7. Fluoride in water, health implications and plant-based remediation strategies
  8. Poultry nutrition
  9. Synthesis of N-containing heterocycles in water
  10. Inorganic nanoparticles promoted synthesis of heterocycles
  11. The role of analytical chemistry in poultry science
  12. Antibiotics in avian care and husbandry-status and alternative antimicrobials
  13. Removal of heavy metals from wastewater using synthetic chelating agents
  14. Azadirachtin in the aquatic environment: Fate and effects on non-target fauna
  15. Intensification of bioprocesses with filamentous microorganisms
  16. The science of genetically modified poultry
  17. Emerging in ovo technologies in poultry production and the re-discovered chicken model in preclinical research
  18. The Cambridge structural database (CSD): important resources for teaching concepts in structural chemistry and intermolecular interactions
  19. Microbial production of lactic acid using organic wastes as low-cost substrates
  20. Oxalic acid: recent developments for cost-effective microbial production
  21. Immobilization of α-amylase from Aspergillus fumigatus using adsorption method onto zeolite
  22. A comparative assessment of potentially harmful metals in the Lagos Lagoon and Ogun river catchment
  23. Formulation of a herbal topical cream against Tinea capitis using flavonoids glycosides from Dicerocaryum senecioides and Diospyros mespiliformis
  24. Biodegradable polymers – research and applications
  25. Adsorption of trichloroacetic acid from drinking water using polyethylene terephthalate waste carbon and periwinkle shells–based chitosan
  26. The vital use of isocyanide-based multicomponent reactions (MCR) in chemical synthesis
  27. Pine bark crosslinked to cyclodextrin for the adsorption of 2-nitrophenol from an aqueous solution
  28. Computational study of propene selectivity and yield in the dehydrogenation of propane via process simulation approach
  29. A mini review on the prospects of Fagara zanthoxyloides extract based composites: a remedy for COVID-19 and associated replica?
  30. Physicochemical assessment and insilico studies on the interaction of 5-HT2c receptor with herbal medication bioactive compounds used in the treatment of premature ejaculation
  31. Horse chestnut thermoplastic starch nanocomposite films reinforced with nanocellulose
  32. Rice thermoplastic starch nanocomposite films reinforced with nanocellulose
Heruntergeladen am 25.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2022-0349/pdf
Button zum nach oben scrollen