Startseite Horse chestnut thermoplastic starch nanocomposite films reinforced with nanocellulose
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Horse chestnut thermoplastic starch nanocomposite films reinforced with nanocellulose

  • Abu Hassan Nordin ORCID logo , Rushdan Ahmad Ilyas ORCID logo EMAIL logo , Norzita Ngadi , Nurul Huda Baharuddin , Muhammad Luqman Nordin und Mohammad Saifulddin Mohd Azami
Veröffentlicht/Copyright: 22. März 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The starch-based materials such as thermoplastic starch film are a promising alternative to non-renewable petroleum-based plastics. The development of an alternative conventional plastic from bio-based materials has gained great interest following its biodegradable, non-hazardous and renewable advantages. Following that, horse chestnut is an exciting source of starch for producing thermoplastic starch film. Nonetheless, the thermoplastic starch film is weak in strength and easily affected by water due to its highly hydrophilic property, thus limiting its practicability. In this regard, the additions of nanocellulose into thermoplastic starch have shown drastic improvement in its mechanical properties and water permeability of the film. This chapter discusses the potential of nanocellulose reinforced plasticized starch from horse chestnut as a replacement for petroleum-based plastic in packaging applications.


Corresponding author: Rushdan Ahmad Ilyas, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia; Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; and Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shogren, RL, Fanta, GF, Doane, WM. Development of starch based plastics‐a reexamination of selected polymer systems in historical perspective. Starch Staerke 1993;45:276–80. https://doi.org/10.1002/star.19930450806.Suche in Google Scholar

2. CASTAñO, J, Rodríguez-Llamazares, S, Contreras, K, Carrasco, C, Pozo, C, Bouza, R, et al.. Horse chestnut (Aesculus hippocastanum L.) starch: basic physico-chemical characteristics and use as thermoplastic material. Carbohydr Polym 2014;112:677–85.10.1016/j.carbpol.2014.06.046Suche in Google Scholar PubMed

3. Van Soest, J, Benes, K, De Wit, D, Vliegenthart, J. The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer 1996;37:3543–52. https://doi.org/10.1016/0032-3861(96)00165-6.Suche in Google Scholar

4. Bharadwaj, D. Use and environment impact of biodegradable plastics-a review. CAAS 2010;2:65–9.Suche in Google Scholar

5. Čukanović, J, Ninić-Todorović, J, Ognjanov, V, Mladenović, E, Ljubojević, M, Kurjakov, A. Biochemical composition of the horse chestnut seed (Aesculus hippocastanum L.). Arch Biol Sci 2011;63:345–51. https://doi.org/10.2298/abs1102345c.Suche in Google Scholar

6. Shah, U, Gani, A, Ashwar, BA, Shah, A, Wani, IA, Masoodi, FA. Effect of infrared and microwave radiations on properties of Indian Horse Chestnut starch. Int J Biol Macromol 2016;84:166–73. https://doi.org/10.1016/j.ijbiomac.2015.12.020.Suche in Google Scholar PubMed

7. Faradilla, RF, Lee, G, Rawal, A, Hutomo, T, Stenzel, MH, Arcot, J. Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation. Cellulose 2016;23:3023–37. https://doi.org/10.1007/s10570-016-1025-8.Suche in Google Scholar

8. Khalil, HA, Bhat, A, Yusra, AI. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 2012;87:963–79.10.1016/j.carbpol.2011.08.078Suche in Google Scholar

9. Montero, B, Rico, M, Rodríguez-Llamazares, S, Barral, L, Bouza, R. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym 2017;157:1094–104. https://doi.org/10.1016/j.carbpol.2016.10.073.Suche in Google Scholar PubMed

10. Raheem, D. Application of plastics and paper as food packaging materials-an overview. Emir J Food Agric 2013:177–88. https://doi.org/10.9755/ejfa.v25i3.11509.Suche in Google Scholar

11. Mishra, SP, Manent, A-S, Chabot, B, Daneault, C. Production of nanocellulose from native cellulose–various options utilizing ultrasound. Bioresources 2012;7:0422–36.10.15376/biores.7.1.422-436Suche in Google Scholar

12. Khwaldia, K, Arab‐Tehrany, E, Desobry, S. Biopolymer coatings on paper packaging materials. Compr Rev Food Sci Food Saf 2010;9:82–91. https://doi.org/10.1111/j.1541-4337.2009.00095.x.Suche in Google Scholar PubMed

13. Abdelgawad, AM, El-Naggar, ME, Hudson, SM, Rojas, OJ. Fabrication and characterization of bactericidal thiol-chitosan and chitosan iodoacetamide nanofibres. Int J Biol Macromol 2017;94:96–105. https://doi.org/10.1016/j.ijbiomac.2016.07.061.Suche in Google Scholar PubMed

14. Robertson, GL. Food packaging: principles and practice. Milan: CRC Press; 2016.Suche in Google Scholar

15. Su, Y, Kravets, V, Wong, S, Waters, J, Geim, AK, Nair, RR. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat Commun 2014;5:1–5. https://doi.org/10.1038/ncomms5843.Suche in Google Scholar PubMed

16. Marsh, K, Bugusu, B. Food packaging—roles, materials, and environmental issues. J Food Sci 2007;72:R39–R55. https://doi.org/10.1111/j.1750-3841.2007.00301.x.Suche in Google Scholar PubMed

17. Davis, G, Song, J. Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 2006;23:147–61. https://doi.org/10.1016/j.indcrop.2005.05.004.Suche in Google Scholar

18. Spierling, S, Knüpffer, E, Behnsen, H, Mudersbach, M, Krieg, H, Springer, S, et al.. Bio-based plastics-A review of environmental, social and economic impact assessments. J Clean Prod 2018;185:476–91. https://doi.org/10.1016/j.jclepro.2018.03.014.Suche in Google Scholar

19. Abe, MM, Martins, JR, Sanvezzo, PB, Macedo, JV, Branciforti, MC, Halley, P, et al.. Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers 2021;13:2484. https://doi.org/10.3390/polym13152484.Suche in Google Scholar PubMed PubMed Central

20. Tharanathan, R. Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 2003;14:71–8. https://doi.org/10.1016/s0924-2244(02)00280-7.Suche in Google Scholar

21. de Paula, FC, de Paula, CB, Contiero, J. Prospective biodegradable plastics from biomass conversion processes. In: Biofuels-state of development; 2018:245–72 pp.10.5772/intechopen.75111Suche in Google Scholar

22. Naik, SN, Goud, VV, Rout, PK, Dalai, AK. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 2010;14:578–97. https://doi.org/10.1016/j.rser.2009.10.003.Suche in Google Scholar

23. Neuling, U, Kaltschmitt, M. Review of biofuel production-feedstock, processes and markets. J Oil Palm Res 2017;29:137–67. https://doi.org/10.21894/jopr.2017.2902.01.Suche in Google Scholar

24. Mekonnen, T, Mussone, P, Khalil, H, Bressler, D. Progress in bio-based plastics and plasticizing modifications. J Mater Chem 2013;1:13379–98. https://doi.org/10.1039/c3ta12555f.Suche in Google Scholar

25. Galić, K, Ščetar, M, Kurek, M. The benefits of processing and packaging. Trends Food Sci Technol 2011;22:127–37.10.1016/j.tifs.2010.04.001Suche in Google Scholar

26. Asgher, M, Qamar, SA, Bilal, M, Iqbal, HM. Bio-based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 2020;137:109625. https://doi.org/10.1016/j.foodres.2020.109625.Suche in Google Scholar PubMed

27. Blanco-Pascual, N, Fernández-Martín, F, Montero, M. Effect of different protein extracts from Dosidicus gigas muscle co-products on edible films development. Food Hydrocolloids 2013;33:118–31. https://doi.org/10.1016/j.foodhyd.2013.02.019.Suche in Google Scholar

28. Liu, H, Xie, F, Yu, L, Chen, L, Li, L. Thermal processing of starch-based polymers. Prog Polym Sci 2009;34:1348–68. https://doi.org/10.1016/j.progpolymsci.2009.07.001.Suche in Google Scholar

29. Buleon, A, Colonna, P, Planchot, V, Ball, S. Starch granules: structure and biosynthesis. Int J Biol Macromol 1998;23:85–112. https://doi.org/10.1016/s0141-8130(98)00040-3.Suche in Google Scholar PubMed

30. Whistler, RL, BeMiller, JN, Paschall, EF. Starch: chemistry and technology. Academic Press; 2012.Suche in Google Scholar

31. Liu, H, Yu, L, Simon, G, Dean, K, Chen, L. Effects of annealing on gelatinization and microstructures of corn starches with different amylose/amylopectin ratios. Carbohydr Polym 2009;77:662–9. https://doi.org/10.1016/j.carbpol.2009.02.010.Suche in Google Scholar

32. Fishman, M, Coffin, D, Konstance, R, Onwulata, C. Extrusion of pectin/starch blends plasticized with glycerol. Carbohydr Polym 2000;41:317–25. https://doi.org/10.1016/s0144-8617(99)00117-4.Suche in Google Scholar

33. Forssell, PM, Mikkilä, JM, Moates, GK, Parker, R. Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydr Polym 1997;34:275–82. https://doi.org/10.1016/s0144-8617(97)00133-1.Suche in Google Scholar

34. Hulleman, SH, Janssen, FH, Feil, H. The role of water during plasticization of native starches. Polymer 1998;39:2043–8. https://doi.org/10.1016/s0032-3861(97)00301-7.Suche in Google Scholar

35. Ma, X, Yu, J, Kennedy, JF. Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr Polym 2005;62:19–24. https://doi.org/10.1016/j.carbpol.2005.07.015.Suche in Google Scholar

36. Rafiq, SI, Jan, K, Singh, S, Saxena, D. Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch. J Food Sci Technol 2015;52:5651–60. https://doi.org/10.1007/s13197-014-1692-0.Suche in Google Scholar PubMed PubMed Central

37. Ahmad, M, Gani, A. Ultrasonicated resveratrol loaded starch nanocapsules: characterization, bioactivity and release behaviour under in-vitro digestion. Carbohydr Polym 2021;251:117111. https://doi.org/10.1016/j.carbpol.2020.117111.Suche in Google Scholar PubMed

38. Hymavathi, T, Thejasri, V, Roberts, TP. Enhancing cooking, sensory and nutritional quality of finger millet noodles through incorporation of hydrocolloids. Int J Chem Stud 2019;7:877–81.Suche in Google Scholar

39. Popescu, PA, Popa, EE, Mitelut, AC, Popa, ME. Development of recyclable and biodegradable food packaging materials–opportunities and risks. Curr Trends Nat Sci 2020;9:142–6. https://doi.org/10.47068/ctns.2020.v9i17.016.Suche in Google Scholar

40. Arikan, EB, Ozsoy, HD. A review: investigation of bioplastics. J Civ Eng Architect 2015;9:188–92.10.17265/1934-7359/2015.02.007Suche in Google Scholar

41. Okolie, JA, Rana, R, Nanda, S, Dalai, AK, Kozinski, JA. Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain Energy Fuels 2019;3:578–98. https://doi.org/10.1039/c8se00565f.Suche in Google Scholar

42. Ochi, S. Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos Appl Sci Manuf 2006;37:1879–83. https://doi.org/10.1016/j.compositesa.2005.12.019.Suche in Google Scholar

43. Stevens, E, Klamczynski, A, Glenn, G. Starch-lignin foams. Express Polym Lett 2010;4:311–20. https://doi.org/10.3144/expresspolymlett.2010.39.Suche in Google Scholar

44. Yang, J, Ching, YC, Chuah, CH. Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 2019;11:751. https://doi.org/10.3390/polym11050751.Suche in Google Scholar PubMed PubMed Central

45. Thakur, VK, Thakur, MK. Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 2015;72:834–47. https://doi.org/10.1016/j.ijbiomac.2014.09.044.Suche in Google Scholar PubMed

46. Lennartsson, PR, Niklasson, C, Taherzadeh, MJ. A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an air-lift reactor. Bioresour Technol 2011;102:4425–32. https://doi.org/10.1016/j.biortech.2010.12.089.Suche in Google Scholar PubMed

47. Khan, B, Bilal Khan Niazi, M, Samin, G, Jahan, Z. Thermoplastic starch: a possible biodegradable food packaging material—a review. J Food Process Eng 2017;40:e12447. https://doi.org/10.1111/jfpe.12447.Suche in Google Scholar

48. Akil, H, Omar, M, Mazuki, AM, Safiee, S, Ishak, ZM, Bakar, AA. Kenaf fiber reinforced composites: a review. Mater Des 2011;32:4107–21. https://doi.org/10.1016/j.matdes.2011.04.008.Suche in Google Scholar

49. El-Saied, H, El-Diwany, AI, Basta, AH, Atwa, NA, El-Ghwas, DE. Production and characterization of economical bacterial cellulose. Bioresources 2008;3:1196–217.10.15376/biores.3.4.1196-1217Suche in Google Scholar

50. Shalwan, A, Yousif, B. In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 2013;48:14–24. https://doi.org/10.1016/j.matdes.2012.07.014.Suche in Google Scholar

51. Singha, A, Thakur, VK. Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Char 2010;15:87–97. https://doi.org/10.1080/10236660903474506.Suche in Google Scholar

52. Singha, A, Thakur, VK. Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci 2009;32:49–58. https://doi.org/10.1007/s12034-009-0008-x.Suche in Google Scholar

53. Bogoeva‐Gaceva, G, Avella, M, Malinconico, M, Buzarovska, A, Grozdanov, A, Gentile, G, et al.. Natural fiber eco‐composites. Polym Compos 2007;28:98–107.10.1002/pc.20270Suche in Google Scholar

54. Eichhorn, SJ, Dufresne, A, Aranguren, M, Marcovich, N, Capadona, J, Rowan, SJ, et al.. Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 2010;45:1–33. https://doi.org/10.1007/s10853-009-3874-0.Suche in Google Scholar

55. Singha, A, Thakur, VK. Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 2009;58:217–28. https://doi.org/10.1080/00914030802639999.Suche in Google Scholar

56. Gaspar, M, Benkő, Z, Dogossy, G, Reczey, K, Czigany, T. Reducing water absorption in compostable starch-based plastics. Polym Degrad Stabil 2005;90:563–9. https://doi.org/10.1016/j.polymdegradstab.2005.03.012.Suche in Google Scholar

57. Agustin, MB, Ahmmad, B, Alonzo, SMM, Patriana, FM. Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinforc Plast Compos 2014;33:2205–13. https://doi.org/10.1177/0731684414558325.Suche in Google Scholar

58. Chen, Y, Liu, C, Chang, PR, Anderson, DP, Huneault, MA. Pea starch‐based composite films with pea hull fibers and pea hull fiber‐derived nanowhiskers. Polym Eng Sci 2009;49:369–78. https://doi.org/10.1002/pen.21290.Suche in Google Scholar

59. Chen, Y, Liu, C, Chang, PR, Cao, X, Anderson, DP. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 2009;76:607–15. https://doi.org/10.1016/j.carbpol.2008.11.030.Suche in Google Scholar

60. Lu, Y, Weng, L, Cao, X. Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydr Polym 2006;63:198–204. https://doi.org/10.1016/j.carbpol.2005.08.027.Suche in Google Scholar

61. Cao, X, Chen, Y, Chang, P, Muir, A, Falk, G. Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2008;2:502–10. https://doi.org/10.3144/expresspolymlett.2008.60.Suche in Google Scholar

62. Guimarães, IC, dos Reis, KC, Menezes, EGT, Rodrigues, AC, da Silva, TF, de Oliveira, IRN, et al.. Cellulose microfibrillated suspension of carrots obtained by mechanical defibrillation and their application in edible starch films. Ind Crop Prod 2016;89:285–94.10.1016/j.indcrop.2016.05.024Suche in Google Scholar

63. do Lago, RC, de Oliveira, ALM, Dias, MC, de Carvalho, EEN, Tonoli, GHD, Boas, EVdBV. Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: mechanical and barrier properties. Ind Crop Prod 2020;148:112264. https://doi.org/10.1016/j.indcrop.2020.112264.Suche in Google Scholar

64. Leppänen, K, Andersson, S, Torkkeli, M, Knaapila, M, Kotelnikova, N, Serimaa, R. Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 2009;16:999–1015.10.1007/s10570-009-9298-9Suche in Google Scholar

65. Zulkifli, NI, Samat, N, Anuar, H, Zainuddin, N. Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Mater Des 2015;69:114–23.10.1016/j.matdes.2014.12.053Suche in Google Scholar

66. Sun, X, Lu, C, Liu, Y, Zhang, W, Zhang, X. Melt-processed poly (vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydr Polym 2014;101:642–9. https://doi.org/10.1016/j.carbpol.2013.09.088.Suche in Google Scholar PubMed

67. Haafiz, MM, Hassan, A, Zakaria, Z, Inuwa, IM, Islam, MS, Jawaid, M. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 2013;98:139–45. https://doi.org/10.1016/j.carbpol.2013.05.069.Suche in Google Scholar PubMed

68. Davoudpour, Y, Hossain, S, Khalil, HA, Haafiz, MM, Ishak, ZM, Hassan, A, et al.. Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology. Ind Crop Prod 2015;74:381–7. https://doi.org/10.1016/j.indcrop.2015.05.029.Suche in Google Scholar

69. Islam, MT, Alam, MM, Zoccola, M. Review on modification of nanocellulose for application in composites. Int J Innov Res Sci Eng Technol 2013;2:5444–51.Suche in Google Scholar

70. Cao, X, Dong, H, Li, CM. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 2007;8:899–904. https://doi.org/10.1021/bm0610368.Suche in Google Scholar PubMed

71. Boccuni, F, Rondinone, B, Petyx, C, Iavicoli, S. Potential occupational exposure to manufactured nanoparticles in Italy. J Clean Prod 2008;16:949–56. https://doi.org/10.1016/j.jclepro.2007.04.021.Suche in Google Scholar

72. Kahn, J. Nano’s big future: nanotechnology. Natl Geogr 2006;209:98–114.Suche in Google Scholar

73. Qiao, R, Brinson, LC. Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 2009;69:491–9.10.1016/j.compscitech.2008.11.022Suche in Google Scholar

74. De Azeredo, HM. Nanocomposites for food packaging applications. Food Res Int 2009;42:1240–53. https://doi.org/10.1016/j.foodres.2009.03.019.Suche in Google Scholar

75. Jordan, J, Jacob, KI, Tannenbaum, R, Sharaf, MA, Jasiuk, I. Experimental trends in polymer nanocomposites—a review. Mater Sci Eng 2005;393:1–11. https://doi.org/10.1016/j.msea.2004.09.044.Suche in Google Scholar

76. Oksman, K, Mathew, AP, Bondeson, D, Kvien, I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 2006;66:2776–84. https://doi.org/10.1016/j.compscitech.2006.03.002.Suche in Google Scholar

77. Hassan, I, Wani, IA, Hussain, PR, Dar, AH. Physico-chemical properties of Indian horse chestnut (aesculus indica) starch films as affected by γ-irradiation. J Packaging Technol Res 2021;5:175–84. https://doi.org/10.1007/s41783-021-00121-4.Suche in Google Scholar

78. Wani, IA, Jabeen, M, Geelani, H, Masoodi, FA, Saba, I, Muzaffar, S. Effect of gamma irradiation on physicochemical properties of Indian Horse Chestnut (Aesculus indica Colebr.) starch. Food Hydrocolloids 2014;35:253–63. https://doi.org/10.1016/j.foodhyd.2013.06.002.Suche in Google Scholar

Published Online: 2023-03-22

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Reviews
  3. Topology and applications of 2D Dirac and semi-Dirac materials
  4. Landscape ecological modeling to identify ecologically significant regions in Tumkur district, Karnataka
  5. Surfactants-surface active agents behind sustainable living
  6. Ecological footprint of poultry production and effect of environment on poultry genes
  7. Fluoride in water, health implications and plant-based remediation strategies
  8. Poultry nutrition
  9. Synthesis of N-containing heterocycles in water
  10. Inorganic nanoparticles promoted synthesis of heterocycles
  11. The role of analytical chemistry in poultry science
  12. Antibiotics in avian care and husbandry-status and alternative antimicrobials
  13. Removal of heavy metals from wastewater using synthetic chelating agents
  14. Azadirachtin in the aquatic environment: Fate and effects on non-target fauna
  15. Intensification of bioprocesses with filamentous microorganisms
  16. The science of genetically modified poultry
  17. Emerging in ovo technologies in poultry production and the re-discovered chicken model in preclinical research
  18. The Cambridge structural database (CSD): important resources for teaching concepts in structural chemistry and intermolecular interactions
  19. Microbial production of lactic acid using organic wastes as low-cost substrates
  20. Oxalic acid: recent developments for cost-effective microbial production
  21. Immobilization of α-amylase from Aspergillus fumigatus using adsorption method onto zeolite
  22. A comparative assessment of potentially harmful metals in the Lagos Lagoon and Ogun river catchment
  23. Formulation of a herbal topical cream against Tinea capitis using flavonoids glycosides from Dicerocaryum senecioides and Diospyros mespiliformis
  24. Biodegradable polymers – research and applications
  25. Adsorption of trichloroacetic acid from drinking water using polyethylene terephthalate waste carbon and periwinkle shells–based chitosan
  26. The vital use of isocyanide-based multicomponent reactions (MCR) in chemical synthesis
  27. Pine bark crosslinked to cyclodextrin for the adsorption of 2-nitrophenol from an aqueous solution
  28. Computational study of propene selectivity and yield in the dehydrogenation of propane via process simulation approach
  29. A mini review on the prospects of Fagara zanthoxyloides extract based composites: a remedy for COVID-19 and associated replica?
  30. Physicochemical assessment and insilico studies on the interaction of 5-HT2c receptor with herbal medication bioactive compounds used in the treatment of premature ejaculation
  31. Horse chestnut thermoplastic starch nanocomposite films reinforced with nanocellulose
  32. Rice thermoplastic starch nanocomposite films reinforced with nanocellulose
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2022-0028/html?lang=de
Button zum nach oben scrollen