Home Cellulose-based polymers
Article
Licensed
Unlicensed Requires Authentication

Cellulose-based polymers

  • Xing Zhou EMAIL logo , Yaya Hao , Xin Zhang , Xinyu He and Chaoqun Zhang EMAIL logo
Published/Copyright: April 19, 2021
Become an author with De Gruyter Brill

Abstract

The presented chapter deals with structure, morphology, and properties aspects concerning cellulose-based polymers in both research and industrial production, such as cellulose fibers, cellulose membranes, cellulose nanocrystals, and bacterial cellulose, etc. The idea was to highlight the main cellulose-based polymers and cellulose derivatives, as well as the dissolution technologies in processing cellulose-based products. The structure and properties of cellulose are introduced briefly. The main attention has been paid to swelling and dissolution of cellulose in order to yield various kinds of cellulose derivatives through polymerization. The main mechanisms and methods are also presented. Finally, the environmental friendly and green cellulose-based polymers will be evaluated as one of the multifunctional and smart materials with significant progress.


Corresponding author: Xing Zhou, Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, P. R. China; and School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, P. R. China, E-mail: ; and Chaoqun Zhang, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 51802259

Funding source: Natural Science Foundation of Shaanxi

Award Identifier / Grant number: 2019JQ-510

Funding source: Xi’an and Xi’an Beilin District Programs for Science and Technology Plan

Award Identifier / Grant number: 201805037YD15CG21(18)

Award Identifier / Grant number: GX1913

Funding source: Youth of Shaanxi University Science and Technology Association

Award Identifier / Grant number: 20190415

Funding source: Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council

Award Identifier / Grant number: PQETGP2019003

Funding source: Xi’an University of Technology

Award Identifier / Grant number: 108-451118001

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 51802259), the Natural Science Foundation of Shaanxi (Grant No. 2019JQ-510), Xi’an and Xi’an Beilin District Programs for Science and Technology Plan (Grant Nos. 201805037YD15CG21(18) and GX1913), the Promotion Program for Youth of Shaanxi University Science and Technology Association (Grant No. 20190415), Fund of Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council (Grant No. PQETGP2019003), the PhD Start-up fund project (Grant No. 108-451118001) of Xi’an University of Technology.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sanderson, K. From plant to power. Nature 2009;461:710–1. https://doi.org/10.1038/461710a.Search in Google Scholar PubMed

2. Raupach, MR, Canadell, JG. Carbon and the anthropocene. Curr Opin Environ Sustain2010;2:210–8. https://doi.org/10.1016/j.cosust.2010.04.003.Search in Google Scholar

3. Hubbe, MA, Buehlmann, U. A continuing reverence for wood. BioResources 2010;5:1–2.10.15376/biores.5.1.1-2Search in Google Scholar

4. Tsien, TH, Needham, J. Science and civilization in China. Cambridge: Cambridge University Press; 1985.Search in Google Scholar

5. Zhu, HL, Luo, W, Ciesielski, PN, Fang, ZQ, Zhu, JY, Henriksson, G, et al.. Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 2016;116:9305–74. https://doi.org/10.1021/acs.chemrev.6b00225.Search in Google Scholar PubMed

6. Gallezot, P. Conversion of biomass to selected chemical products. Chem Soc Rev 2012;41:1538–58. https://doi.org/10.1039/c1cs15147a.Search in Google Scholar PubMed

7. Araki, J, Miyayama, M. Wet spinning of cellulose nanowhiskers; fiber yarns obtained only from colloidal cellulose crystals. Polymer 2020;188:122116. https://doi.org/10.1016/j.polymer.2019.122116.Search in Google Scholar

8. Payen, A. Memoir on the composition of the tissue of plants and of woody. Compt Rend 1838;7:1052–125.Search in Google Scholar

9. Heuser, E. The chemistry of cellulose. New York: John Wiley & Sons; 1944.Search in Google Scholar

10. Kassig, H, Kennedy, J, Phillips, G, Williams, P. In cellulose and its derivatives. New York: Ellis Norwood; 1985: 3–25pp.Search in Google Scholar

11. Moon, RJ, Martini, A, Nairn, J, Simonsen, J, Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011;40:3941–94. https://doi.org/10.1039/c0cs00108b.Search in Google Scholar PubMed

12. Tu, H, Xie, K, Ying, DF, Luo, LB, Liu, XY, Chen, F, et al.. Green and economical strategy for spinning robust cellulose filaments. ACS Sustain Chem Eng 2020;8:14927–37. https://doi.org/10.1021/acssuschemeng.0c04890.Search in Google Scholar

13. Sun, B, Zhang, M, Chen, J, He, Z, Fatehi, P, Ni, Y. Applications of cellulose-based materials sustained drug delivery systems. Curr Med Chem 2019;26:2485–501. https://doi.org/10.2174/0929867324666170705143308.Search in Google Scholar PubMed

14. Moran, JI, Alvarez, VA, Cyras, VP, Vazquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2008;15:149–59. https://doi.org/10.1007/s10570-007-9145-9.Search in Google Scholar

15. Jung, YH, Chang, TH, Zhang, HL, Yao, CH, Zheng, QF, Yang, VW, et al.. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 2015;6:7170. https://doi.org/10.1038/ncomms8170.Search in Google Scholar PubMed PubMed Central

16. Zhou, X, Deng, J, Yang, R, Zhou, D, Fang, C, He, X, et al.. Facile preparation and characterization of fibrous carbon nanomaterial from waste polyethylene terephthalate. Waste Manag 2020;107:172–81. https://doi.org/10.1016/j.wasman.2020.03.041.Search in Google Scholar PubMed

17. Lei, W, Zhou, X, Fang, C, Li, Y, Song, Y, Wang, C, et al.. New approach to recycle office waste paper: reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. Waste Manag 2019;95:59–69. https://doi.org/10.1016/j.wasman.2019.06.003.Search in Google Scholar PubMed

18. Mogosanu, GD, Grumezescu, AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 2014;463:127–36.10.1016/j.ijpharm.2013.12.015Search in Google Scholar

19. Ramamoorthy, SK, Skrifvars, M, Persson, A. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 2015;55:107–62. https://doi.org/10.1080/15583724.2014.971124.Search in Google Scholar

20. Emam, HE, Mowafi, S, Mashaly, HM, Rehan, M. Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles. Carbohydr Polym 2014;110:148–55. https://doi.org/10.1016/j.carbpol.2014.03.082.Search in Google Scholar PubMed

21. Michud, A, Tanttu, M, Asaadi, S, Ma, YB, Netti, E, Kaariainen, P, et al.. Ionic liquid-based cellulosic textile fibers as an alternative to viscose and lyocell. Textil Res J 2016;86:543–52. https://doi.org/10.1177/0040517515591774.Search in Google Scholar

22. Schild, G, Sixta, H. Sulfur-free dissolving pulps and their application for viscose and lyocell. Cellulose 2011;18:1113–28. https://doi.org/10.1007/s10570-011-9532-0.Search in Google Scholar

23. Cai, J, Zhang, L, Liu, SL, Liu, YT, Xu, XJ, Chen, XM, et al.. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 2008;41:9345–51. https://doi.org/10.1021/ma801110g.Search in Google Scholar

24. Song, YB, Sun, YX, Zhang, XZ, Zhou, JP, Zhang, LN. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 2008;9:2259–64. https://doi.org/10.1021/bm800429a.Search in Google Scholar PubMed

25. Chang, CY, Zhang, LZ, Zhou, JP, Zhang, LN, Kennedy, JF. Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 2010;82:122–7. https://doi.org/10.1016/j.carbpol.2010.04.033.Search in Google Scholar

26. Wang, S, Lu, A, Zhang, LN. Recent advances in regenerated cellulose materials. Prog Polym Sci 2016;53:169–206. https://doi.org/10.1016/j.progpolymsci.2015.07.003.Search in Google Scholar

27. Cai, J, Zhang, L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 2005;5:539–48. https://doi.org/10.1002/mabi.200400222.Search in Google Scholar PubMed

28. Cai, J, Zhang, L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 2006;7:183–9. https://doi.org/10.1021/bm0505585.Search in Google Scholar PubMed

29. Cai, J, Zhang, L, Zhou, J, Qi, H, Chen, H, Kondo, T, et al.. Cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 2007;19:821–5. https://doi.org/10.1002/adma.200601521.Search in Google Scholar

30. Guo, Y, Zhou, JP, Song, YB, Zhang, LN. An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 2009;30:1504–8. https://doi.org/10.1002/marc.200900238.Search in Google Scholar PubMed

31. Kosan, B, Michels, C, Meister, F. Dissolution and forming of cellulose with ionic liquids. Cellulose 2008;15:59–66. https://doi.org/10.1007/s10570-007-9160-x.Search in Google Scholar

32. Cuissinat, C, Navard, P, Heinze, T. Swelling and dissolution of cellulose. Part IV: free floating cotton and wood fibres in ionic liquids. Carbohydr Polym 2008;72:590–6. https://doi.org/10.1016/j.carbpol.2007.09.029.Search in Google Scholar

33. Pinkert, A, Marsh, KN, Pang, SS, Staiger, MP. Ionic liquids and their interaction with cellulose. Chem Rev 2009;109:6712–28. https://doi.org/10.1021/cr9001947.Search in Google Scholar PubMed

34. Wang, H, Gurau, G, Rogers, RD. Ionic liquid processing of cellulose. Chem Soc Rev 2012;41:1519–37. https://doi.org/10.1039/c2cs15311d.Search in Google Scholar PubMed

35. Cai, Y, Zhang, H, Guo, Q, Shao, H, Hu, X. Structure and properties of cellulose fibers from ionic liquids. J Appl Polym Sci 2010;115:1047–53. https://doi.org/10.1002/app.31081.Search in Google Scholar

36. Lei, W, Zhou, X, Fang, C, Song, Y, Li, Y. Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from office waste paper by two different methods. Carbohydr Polym 2019;209:299–309. https://doi.org/10.1016/j.carbpol.2019.01.013.Search in Google Scholar PubMed

37. Yu, SC, Liu, MH, Ma, M, Qi, M, Lu, ZH, Gao, CJ. Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. J Membr Sci 2010;350:83–91. https://doi.org/10.1016/j.memsci.2009.12.014.Search in Google Scholar

38. Zhao, DW, Chen, CJ, Zhang, Q, Chen, WS, Liu, SX, Wang, QW, et al.. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv Energy Mater 2017;7:1700739. https://doi.org/10.1002/aenm.201700739.Search in Google Scholar

39. Kesting, RE. Phase inversion membranes. ACS Symp Ser 1985;269:131–64. https://doi.org/10.1021/bk-1985-0269.ch007.Search in Google Scholar

40. Laity, PR, Glover, PM, Hay, JN. Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 2002;43:5827–37. https://doi.org/10.1016/s0032-3861(02)00531-1.Search in Google Scholar

41. Thakur, VK, Voicu, SI. Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 2016;146:148–65. https://doi.org/10.1016/j.carbpol.2016.03.030.Search in Google Scholar PubMed

42. Saljoughi, E, Amirilargani, M, Mohammadi, T. Effect of poly (vinyl pyrrolidone) concentration and coagulation bath temperature on the morphology, permeability, and thermal stability of asymmetric cellulose acetate membranes. J Appl Polym Sci 2009;111:2537–44. https://doi.org/10.1002/app.29354.Search in Google Scholar

43. Nguyen, TPN, Yun, ET, Kim, IC, Kwon, YN. Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. J Membr Sci 2013;433:49–59. https://doi.org/10.1016/j.memsci.2013.01.027.Search in Google Scholar

44. Wang, B, Kang, HL, Yang, HG, Xie, JJ, Liu, RG. Preparation and dielectric properties of porous cyanoethyl cellulose membranes. Cellulose 2019;26:1261–75. https://doi.org/10.1007/s10570-018-2132-5.Search in Google Scholar

45. Zhang, L, Mao, Y, Zhou, J, Cai, J. Effects of coagulation conditions on the properties of regenerated cellulose films prepared in NaOH/urea aqueous solution. Ind Eng Chem Res 2005;44:522–9. https://doi.org/10.1021/ie0491802.Search in Google Scholar

46. Mao, Y, Zhou, J, Cai, J, Zhang, L. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 2006;279:246–55. https://doi.org/10.1016/j.memsci.2005.07.048.Search in Google Scholar

47. Ruan, D, Zhang, L, Mao, Y, Zeng, M, Li, X. Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution. J Membr Sci 2004;241:265–74. https://doi.org/10.1016/j.memsci.2004.05.019.Search in Google Scholar

48. Liu, S, Zhang, L. Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 2009;16:189–98. https://doi.org/10.1007/s10570-008-9268-7.Search in Google Scholar

49. Saljoughi, E, Sadrzadeh, M, Mohammadi, T. Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. J Membr Sci 2009;326:627–34. https://doi.org/10.1016/j.memsci.2008.10.044.Search in Google Scholar

50. Lei, W, Fang, C, Zhou, X, Yin, Q, Pan, S, Yang, R, et al.. Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials. Carbohydr Polym 2018;181:376–85. https://doi.org/10.1016/j.carbpol.2017.10.059.Search in Google Scholar PubMed

51. Lagerwall, JPF, Schutz, C, Salajkova, M, Noh, J, Park, JH, Scalia, G, et al.. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 2014;6:e80. https://doi.org/10.1038/am.2013.69.Search in Google Scholar

52. Kistler, SS. Coherent expanded aerogels and jellies. Nature 1931;127:741–2. https://doi.org/10.1038/127741a0.Search in Google Scholar

53. Kistler, SS. Coherent expanded-aerogels. J Phys Chem 1932;36:52–64. https://doi.org/10.1021/j150331a003.Search in Google Scholar

54. Weatherwax, R, Caulfield, D. Cellulose aerogels: an improved method preparing a highly expanded form of dry cellulose. TAPPI (Tech Assoc Pulp Pap Ind) 1971;54:985–6.Search in Google Scholar

55. Tan, C, Fung, B, Newman, J, Vu, C. Organic aerogels with very high impact strength. Adv Mater 2001;13:644–6. https://doi.org/10.1002/1521-4095(200105)13:9<644::aid-adma644>3.0.co;2-#.10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#Search in Google Scholar

56. Duchemin, BJ, Staiger, MP, Tucher, N, Newman, RH. Aerocellulose based on all-cellulose composites. J Appl Polym Sci 2010;115:216–21. https://doi.org/10.1002/app.31111.Search in Google Scholar

57. Wang, Z, Liu, S, Matsumoto, Y, Kuga, S. Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 2012;19:393–9. https://doi.org/10.1007/s10570-012-9651-2.Search in Google Scholar

58. Tingaut, P, Zimmermann, T, Sèbe, T. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 2012;22:20105–11. https://doi.org/10.1039/c2jm32956e.Search in Google Scholar

59. Kettunen, M, Silvennoinen, RJ, Houbenov, N, Nykanen, A, Ruokolainen, J, Sainio, J, et al.. Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 2011;21:510–7. https://doi.org/10.1002/adfm.201001431.Search in Google Scholar

60. Jin, H, Kettunen, M, Laiho, A, Pynnonen, H, Paltakari, J, Marmur, A, et al.. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 2011;27:1930–4. https://doi.org/10.1021/la103877r.Search in Google Scholar PubMed

61. Chang, CY, Zhang, LN. Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 2011;84:40–53. https://doi.org/10.1016/j.carbpol.2010.12.023.Search in Google Scholar

62. Qiu, XY, Hu, SW. Smart materials based on cellulose: a review of the preparations, properties, and applications. Materials 2013;6:738–81. https://doi.org/10.3390/ma6030738.Search in Google Scholar PubMed PubMed Central

63. Galiano, F, Briceño, K, Marino, T, Molino, A, Christensen, KV, Figoli, A. Advances in biopolymer-based membrane preparation and applications. J Membr Sci 2018;564:562–86. https://doi.org/10.1016/j.memsci.2018.07.059.Search in Google Scholar

64. Li, B, Konecke, S, Wegiel, LA, Taylo, LS, Edgar, KJ. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydr Polym 2013;98:1108–16. https://doi.org/10.1016/j.carbpol.2013.07.017.Search in Google Scholar PubMed

65. Wang, Q, Cai, J, Zhang, L, Xu, M, Cheng, H, Han, C, et al.. A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem 2013;1:6678–86. https://doi.org/10.1039/c3ta11130j.Search in Google Scholar

66. Guan, Q, Yang, H, Han, Z, Ling, Z, Yu, S. An all-natural bioinspired structural material for plastic replacement. Nat Commun 2020;11:5401. https://doi.org/10.1038/s41467-020-19174-1.Search in Google Scholar PubMed PubMed Central

67. Zhou, X, Zhang, X, Wang, D, Fang, C, Lei, W, Huang, Z, et al.. Preparation of cellulose nanocrystal film from waste papers and synthesis of waterborne polyurethane nanocomposite films. J Renew Mater 2020;8:631–45. https://doi.org/10.32604/jrm.2020.010176.Search in Google Scholar

68. Trache, D, Hussin, MH, Haafiz, MKM, Thakur, VK. Recent progress in cellulose nanocrystals: sources and production. Nanoscale 2017;9:1763–86. https://doi.org/10.1039/c6nr09494e.Search in Google Scholar PubMed

69. Favier, V, Chanzy, H, Cavaille, J. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 1995;28:6365–7. https://doi.org/10.1021/ma00122a053.Search in Google Scholar

70. Angles, MN, Dufresne, A. Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 2000;33:8344–53. https://doi.org/10.1021/ma0008701.Search in Google Scholar

71. Céline, C, Nicholas, M, Ryo, K, Rowan, SJ. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog Polym Sci 2020;103:101221.10.1016/j.progpolymsci.2020.101221Search in Google Scholar

72. Youssef, H, Lucian, AL, Orlando, JR. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 2010;110:3479–500.10.1021/cr900339wSearch in Google Scholar

73. Roman, M, Winter, WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 2004;5:1671–7. https://doi.org/10.1021/bm034519+.10.1021/bm034519+Search in Google Scholar

74. D’Acierno, F, Hamad, WY, Michal, CA, MacLachlan, MJ. Thermal degradation of cellulose filaments and nanocrystals. Biomacromolecules 2020;21:3374–86. https://doi.org/10.1021/acs.biomac.0c00805.Search in Google Scholar PubMed

75. Thomas, B, Raj, MC, Athira, KB, Rubiyah, MH, Joy, J, Moores, A, et al.. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 2018;118:11575–625. https://doi.org/10.1021/acs.chemrev.7b00627.Search in Google Scholar PubMed

76. Reid, MS, Villalobos, M, Cranston, ED. Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 2017;33:1583–98.10.1021/acs.langmuir.6b03765Search in Google Scholar

77. Grishkewich, N, Mohammed, N, Tang, JT, Tam, KC. Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface 2017;29:32–45. https://doi.org/10.1016/j.cocis.2017.01.005.Search in Google Scholar

78. Elazzouzi-Hafraoui, S, Nishiyama, Y, Putaux, JL, Heux, L, Dubreuil, F, Rochas, C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 2008;9:57–65. https://doi.org/10.1021/bm700769p.Search in Google Scholar PubMed

79. Rosa, MF, Medeiros, ES, Malmonge, JA, Gregorski, KS, Wood, DF, Mattoso, LHC, et al.. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 2010;81:83–92. https://doi.org/10.1016/j.carbpol.2010.01.059.Search in Google Scholar

80. Angles, MN, Dufresne, A. Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 2001;34:2921–31. https://doi.org/10.1021/ma001555h.Search in Google Scholar

81. Diddens, I, Murphy, B, Krisch, M, Muller, M. Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 2008;41:9755–9. https://doi.org/10.1021/ma801796u.Search in Google Scholar

82. Iwamoto, S, Kai, W, Isogai, A, Iwata, T. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 2009;10:2571–6. https://doi.org/10.1021/bm900520n.Search in Google Scholar PubMed

83. Wagner, R, Moon, R, Pratt, J, Shaw, G. Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 2011;22:455703. https://doi.org/10.1088/0957-4484/22/45/455703.Search in Google Scholar PubMed

84. Nishino, T, Matsuda, I, Hirao, K. All-cellulose composite. Macromolecules 2004;37:7683–7. https://doi.org/10.1021/ma049300h.Search in Google Scholar

85. Fleming, K, Gray, DG, Matthews, S. Cellulose crystallites. Chem Eur J 2001;7:1831–5. https://doi.org/10.1002/1521-3765(20010504)7:9<1831::aid-chem1831>3.0.co;2-s.10.1002/1521-3765(20010504)7:9<1831::AID-CHEM1831>3.0.CO;2-SSearch in Google Scholar

86. Dong, XM, Kimura, T, Revol, JF, Gray, DG. Effects of ionic strength on the isotropic–chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 1996;12:2076–82. https://doi.org/10.1021/la950133b.Search in Google Scholar

87. Orts, WJ, Godbout, L, Marchessault, RH, Revol, JF. Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 1998;31:5717–25. https://doi.org/10.1021/ma9711452.Search in Google Scholar

88. Rol, F, Belgacem, MN, Gandini, A, Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 2019;88:241–64. https://doi.org/10.1016/j.progpolymsci.2018.09.002.Search in Google Scholar

89. Nogi, M, Yano, H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 2008;20:1849–52. https://doi.org/10.1002/adma.200702559.Search in Google Scholar

90. Shah, N, Ul-Islam, M, Khattak, WA, Park, JK. Overview of bacterial cellulose composites: a multipurpose advanced. Mater Carbohydr Polym 2013;98:1585–98. https://doi.org/10.1016/j.carbpol.2013.08.018.Search in Google Scholar PubMed

91. Huang, Y, Zhu, CL, Yang, JZ, Nie, Y, Chen, CT, Sun, DP. Recent advances in bacterial cellulose. Cellulose 2014;21:1–30. https://doi.org/10.1007/s10570-013-0088-z.Search in Google Scholar

92. Czaja, WK, Young, DJ, Kawecki, M, Brown, RM. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 2007;8:1–12. https://doi.org/10.1021/bm060620d.Search in Google Scholar PubMed

93. Nakagaito, AN, Yano, H. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 2005;80:155–9. https://doi.org/10.1007/s00339-003-2225-2.Search in Google Scholar

94. Lin, SP, Calvar, IL, Catchmark, JM, Liu, JR, Demirci, A, Cheng, KC. Biosynthesis, production and applications of bacterial cellulose. Cellulose 2013;20:2191–219. https://doi.org/10.1007/s10570-013-9994-3.Search in Google Scholar

95. Romling, U, Galperin, MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 2015;23:545–57. https://doi.org/10.1016/j.tim.2015.05.005.Search in Google Scholar PubMed PubMed Central

96. Klemm, D, Schumann, D, Udhardt, U, Maesch, S. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 2011;26:1561–603.10.1016/S0079-6700(01)00021-1Search in Google Scholar

97. Astley, OM, Chanliaud, E, Donald, AM, Gidley, MJ. Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 2003;32:28–35. https://doi.org/10.1016/s0141-8130(03)00022-9.Search in Google Scholar PubMed

98. Chawla, PR, Bajaj, IB, Survase, SA, Singhal, RS. Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 2009;47:107–24.Search in Google Scholar

99. Menriksson, M, Berglund, LA, Isaksson, P, Lindstrom, T, Nishino, T. Cellulose nanopaper structures of high toughness. Biomacromolecules 2008;9:1579–85. https://doi.org/10.1021/bm800038n.Search in Google Scholar PubMed

100. Yoon, SH, Jin, HJ, Kook, MC, Pyun, YR. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 2006;7:1280–4. https://doi.org/10.1021/bm050597g.Search in Google Scholar PubMed

101. de Moura, MR, Mattoso, LHC, Zucolotto, V. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 2012;109:520–4. https://doi.org/10.1016/j.jfoodeng.2011.10.030.Search in Google Scholar

102. Nehls, I, Wagenknecht, W, Philipp, B, Stscherbina, D. Characterization of cellulose and cellulose derivatives in solution by high resolution 13C-NMR spectroscopy. Prog Polym Sci 1994;19:29–78. https://doi.org/10.1016/0079-6700(94)90037-x.Search in Google Scholar

103. Cocinero, EJ, Gamblin, DP, Davis, BG, Simons, JP. The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J Am Chem Soc 2009;131:11117–23. https://doi.org/10.1021/ja903322w.Search in Google Scholar PubMed

104. Chen, X, Burger, C, Wan, F, Zhang, J, Rong, L, Hsiao, B, et al.. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions. Biomacromolecules 2007;8:1918–26. https://doi.org/10.1021/bm061186i.Search in Google Scholar PubMed

105. Morgan, JLW, Strumillo, J, Zimmer, J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 2013;493:181–6. https://doi.org/10.1038/nature11744.Search in Google Scholar PubMed PubMed Central

106. Payne, CM, Knott, BC, Mayes, HB, Hansson, H, Himmel, ME, Sandgren, M, et al.. Fungal cellulases. Chem Rev 2015;115:1308–448. https://doi.org/10.1021/cr500351c.Search in Google Scholar PubMed

107. Park, S, Baker, JO, Himmel, ME, Parilla, PA, Johnson, DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 2010;3:1–10. https://doi.org/10.1186/1754-6834-3-10.Search in Google Scholar PubMed PubMed Central

108. Sugiyama, J, Okano, T, Yamamoto, H, Horii, F. Transformation of valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 1990;23:3196–8. https://doi.org/10.1021/ma00214a029.Search in Google Scholar

109. Wada, M, Kondo, T, Okano, T. Thermally induced crystaltransformation from cellulose Iα to Iβ. Polym J 2003;35:155–9. https://doi.org/10.1295/polymj.35.155.Search in Google Scholar

110. Wada, M, Heux, L, Sugiyama, J. Polymorphism of cellulose I Family:  reinvestigation of cellulose IVI. Biomacromolecules 2004;5:1385–91. https://doi.org/10.1021/bm0345357.Search in Google Scholar PubMed

111. Siro, I, Plackett, D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 2010;17:459–94. https://doi.org/10.1007/s10570-010-9405-y.Search in Google Scholar

112. Cherhal, F, Cousin, F, Capron, I. Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 2015;31:5596–602. https://doi.org/10.1021/acs.langmuir.5b00851.Search in Google Scholar PubMed

113. French, AD. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014;21:885–96. https://doi.org/10.1007/s10570-013-0030-4.Search in Google Scholar

114. Heinze, T, iebert, T. Unconventional methods in cellulose functionalization. Prog Polym Sci 2001;26:1689–762. https://doi.org/10.1016/s0079-6700(01)00022-3.Search in Google Scholar

115. Isogai, A, Ishizu, A, Nakano, J. Dissolution mechanism of cellulose in SO2-amine-dimethylsulfoxide. J Appl Polym Sci 1987;33:1283–90. https://doi.org/10.1002/app.1987.070330419.Search in Google Scholar

116. Lindman, B, Karlstrom, G, Stigsson, L. On the mechanism of dissolution of cellulose. J Mol Liq 2010;156:76–81. https://doi.org/10.1016/j.molliq.2010.04.016.Search in Google Scholar

117. Swatloski, RP, Spear, SK, Holbrey, JD, Rogers, RD. Dissolution of cellose with ionic liquids. J Am Chem Soc 2002;124:4974–5. https://doi.org/10.1021/ja025790m.Search in Google Scholar PubMed

118. Zhang, H, Wu, J, Zhang, J, He, J. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005;38:8272–7. https://doi.org/10.1021/ma0505676.Search in Google Scholar

119. Wu, J, Zhang, J, Zhang, H, Ren, Q, Guo, M. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 2004;5:266–8. https://doi.org/10.1021/bm034398d.Search in Google Scholar PubMed

120. Zavrel, M, Bross, D, Funke, M, Buchs, J, Spiess, AC. High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 2009;100:2580–7. https://doi.org/10.1016/j.biortech.2008.11.052.Search in Google Scholar PubMed

121. Gadd, KA. New solvent for cellulose. Polymer 1982;23:1867–9. https://doi.org/10.1016/0032-3861(82)90208-7.Search in Google Scholar

122. Jayme, G, Lang, F. Über das celluloselösende system eisen(III)-Weinsäure-Kaliumhydroxyd. Colloid & Polymer 1955;144:75–81. https://doi.org/10.1007/bf01524487.Search in Google Scholar

123. Abe, M, Fukaya, Y, Ohno, H. Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun 2012;48:1808–10. https://doi.org/10.1039/c2cc16203b.Search in Google Scholar PubMed

124. Zheng, XY, Gandour, RD, Edgar, KJ. Remarkably regioselective deacylation of cellulose esters using tetraalkylammonium salts of the strongly basic hydroxide ion. Carbohydr Polym 2014;111:25–32. https://doi.org/10.1016/j.carbpol.2014.04.014.Search in Google Scholar PubMed

125. Cai, J, Kimura, S, Wada, M, Kuga, S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 2009;10:87–94. https://doi.org/10.1021/bm800919e.Search in Google Scholar PubMed

126. Patwardhan, PR, Satrio, JA, Brown, RC, Shanks, BH. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 2010;101:4646–55. https://doi.org/10.1016/j.biortech.2010.01.112.Search in Google Scholar PubMed

127. Zhou, J, Zhang, L. Solubility of cellulose in NaOH/urea aqueous solution. Polym J 2000;32:866–70. https://doi.org/10.1295/polymj.32.866.Search in Google Scholar

128. Zhang, L, Ruan, D, Gao, S, Polym, J. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B Polym Phys 2002;40:1521–9. https://doi.org/10.1002/polb.10215.Search in Google Scholar

129. Cai, J, Zhang, L, Chang, C, Cheng, G, Chen, X, Chu, B. Hydrogen‐bond‐induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 2007;8:1572–9. https://doi.org/10.1002/cphc.200700229.Search in Google Scholar PubMed

130. Ca, J, Liu, Y, Zhang, L. Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci B Polym Phys 2006;44:3093–101.10.1002/polb.20938Search in Google Scholar

131. Wang, SR, Guo, XJ, Liang, T, Zhou, Y, Luo, ZY. Mechanism research on cellulose pyrolysis by py-GC/MS and subsequent density functional theory studies. Bioresour Technol 2012;104:722–8. https://doi.org/10.1016/j.biortech.2011.10.078.Search in Google Scholar PubMed

132. Eyley, S, Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 2014;6:7764. https://doi.org/10.1039/c4nr01756k.Search in Google Scholar PubMed

133. Kim, GY, Lee, HD, Kim, YH. Preparation and thermoresponsive properties of 2-hydroxy-3-butoxypropyl hydroxyethyl cellulose and its hydrogel crosslinked with epichlorohydrin. Polymer-Korea 2020;44:495–504. https://doi.org/10.7317/pk.2020.44.4.495.Search in Google Scholar

134. Arai, K, Shikata, T. Hydration/dehydration behavior of cellulose ethers in aqueous solution. Macromolecules 2017;50:5920–8. https://doi.org/10.1021/acs.macromol.7b00848.Search in Google Scholar

135. Kamel, S, Ali, N, Jahangir, K, Shah, SM, El-Gendy, AA. Pharmaceutical significance of cellulose: a review. Express Polym Lett 2008;2:758–78. https://doi.org/10.3144/expresspolymlett.2008.90.Search in Google Scholar

136. Nevell, TP, Zeronian, SH. Cellulose chemistry and its application. New York: E. Horwood. John Wiley: Halsted Press; 1985.Search in Google Scholar

137. Roy, D, Semsarilar, M, Guthrie, JT, Perrier, S. Cellulose modification by polymer grafting: a review. Chem Soc Rev 2009;38:2046–64. https://doi.org/10.1039/b808639g.Search in Google Scholar PubMed

138. Winding, CC, Hiatt, GD. Polymeric materials. New York: McGraw-Hill; 1961.Search in Google Scholar

139. Fleet, R, McLeary, JB, Grumel, V, Weber, WG, Matahwa, H, Sanderson, RD. RAFT mediated polysaccharide copolymers. Eur Polym J 2008;44:2899–911. https://doi.org/10.1016/j.eurpolymj.2008.06.042.Search in Google Scholar

140. Zhang, S, Wang, KY, Chung, TS, Chen, HM, Jean, YC, Amy, G. Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer. J Membr Sci 2010;360:522–35. https://doi.org/10.1016/j.memsci.2010.05.056.Search in Google Scholar

141. Liu, ZT, Fan, X, Wu, J, Zhang, L, Song, L, Gao, Z, et al.. A green route to prepare cellulose acetate particle from ramie fiber. React Funct Polym 2007;67:104–12. https://doi.org/10.1016/j.reactfunctpolym.2006.10.001.Search in Google Scholar

142. Hornig, S, Heinze, T. Efficient approach to design, stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules 2008;9:1487–92. https://doi.org/10.1021/bm8000155.Search in Google Scholar PubMed

143. Schilling, M, Bouchard, M, Khanjian, H, Learner, T, Phenix, A, Rivenc, R. Application of chemical and thermal analysis methods for studying cellulose ester plastics. Acc Chem Res 2010;43:888–96. https://doi.org/10.1021/ar1000132.Search in Google Scholar PubMed

144. Gindl, W, Keckes, J. Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 2004;64:2407–13. https://doi.org/10.1016/j.compscitech.2004.05.001.Search in Google Scholar

145. Lcrépy, L, MiriL, V, Joly, N, Martin, P, Lefebvre, J. Effect of side chain length on structure and thermomechanical properties of fully substituted cellulose fatty esters. Carbohydr Polym 2011;83:1812–20. https://doi.org/10.1016/j.carbpol.2010.10.045.Search in Google Scholar

146. Thiebaud, S, Borredon, M. Solvent-free wood esterification with fatty acid chlorides. Bioresour Technol 1995;52:169–73. https://doi.org/10.1016/0960-8524(95)00018-a.Search in Google Scholar

147. Suida, W. Über Den Einflu\Der Aktiven Atomgruppen in Den Textilfasern Auf das Zustandekommen Von Färbungen. Monatshefte Fur Chemie 1905;26:413–27. https://doi.org/10.1007/bf01532026.Search in Google Scholar

148. Donges, R. Non-ionic cellulose ethers. Br Polym J 1990;23:315.10.1111/j.2042-7158.1990.tb14396.xSearch in Google Scholar

149. Klemm, D, Philipp, B, Heinze, T, Heinze, U, Wagenknecht, W. Comprehensive cellulose chemistry. Weinheim: Wiley-VCH Vecrlag GmbH; 1998.10.1002/3527601937Search in Google Scholar

150. Siepmann, J, Peppas, NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 2012;64:163–74. https://doi.org/10.1016/j.addr.2012.09.028.Search in Google Scholar

151. Li, L, Thangamathesvaran, PM, Yue, CY, Tam, KC, Hu, X, Lam, YC. Gel network structure of methylcellulose in water. Langmuir 2001;17:8062–8. https://doi.org/10.1021/la010917r.Search in Google Scholar

152. Xu, Y, Li, L. Thermoreversible and salt-sensitive turbidity of methylcellulose in aqueous solution. Polymer 2005;46:7410–7. https://doi.org/10.1016/j.polymer.2005.05.128.Search in Google Scholar

153. Crabbe-Mann, M, Tsaoulidis, D, Parhizkar, M, Edirisinghe, M. Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents. Cellulose 2018;25:1687–703. https://doi.org/10.1007/s10570-018-1673-y.Search in Google Scholar

154. Kohler, S, Liebert, T, Heinze, T, Vollmer, A, Mischnick, P, Mollmann, E, et al.. Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose 2010;17:437–48. https://doi.org/10.1007/s10570-009-9379-9.Search in Google Scholar

155. Angadi, SC, Manjeshwar, LS, Aminabhavi, TM. Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. Int J Biol Macromol 2010;47:171–9. https://doi.org/10.1016/j.ijbiomac.2010.05.003.Search in Google Scholar PubMed

156. Chu, ML, Feng, NR, An, H, You, GL, Mo, CS, Zhong, HY, et al.. Design and validation of antibacterial and pH response of cationic guar gum film by combining hydroxyethyl cellulose and red cabbage pigment. Int J Biol Macromol 2020;162:1311–22. https://doi.org/10.1016/j.ijbiomac.2020.06.198.Search in Google Scholar PubMed

157. Svensson, AV, Huang, LG, Johnson, ES, Nylander, T, Piculell, L. Surface deposition and phase behavior of oppositely charged polyion/surfactant ion complexes. 1. Cationic guar versus cationic hydroxyethylcellulose in mixtures with anionic surfactants. ACS Appl Mater Interfaces 2009;1:2431–42. https://doi.org/10.1021/am900378b.Search in Google Scholar PubMed

158. Benchabane, A, Bekkour, K. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci 2008;286:1173–80. https://doi.org/10.1007/s00396-008-1882-2.Search in Google Scholar

159. Hebeish, A, Hashem, M, Abd El-Hady, MM, Sharaf, S. Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 2013;92:407–13. https://doi.org/10.1016/j.carbpol.2012.08.094.Search in Google Scholar PubMed

160. Lu, BL, Xu, AR, Wang, JJ. Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 2014;16:1326–35. https://doi.org/10.1039/c3gc41733f.Search in Google Scholar

161. Pahimanolis, N, Salminen, A, Penttila, PA, Korhonen, JT, Johansson, LS, Ruokolainen, J, et al.. Nanofibrillated cellulose/carboxymethyl cellulose composite with improved wet strength. Cellulose 2013;20:1459–68. https://doi.org/10.1007/s10570-013-9923-5.Search in Google Scholar

162. Tucker, I, Petkov, J, Penfold, J, Thomas, RK. Adsorption of nonionic and mixed nonionic/cationic surfactants onto hydrophilic and hydrophobic cellulose thin films. Langmuir 2010;26:8036–48. https://doi.org/10.1021/la1000057.Search in Google Scholar PubMed

163. Yang, RM, Shi, RH, Peng, SH, Zhou, D, Liu, H, Wang, YM. Cationized hydroxyethylcellulose as a novel, adsorbed coating for basic protein separation by capillary electrophoresis. Electrophoresis 2008;29:1460–6. https://doi.org/10.1002/elps.200700715.Search in Google Scholar PubMed

164. Frey, MW. Electrospinning cellulose and cellulose derivatives. Polym Rev 2008;48:378–91. https://doi.org/10.1080/15583720802022281.Search in Google Scholar

165. Zhou, JP, Li, QA, Song, YB, Zhang, LN, Lin, XY. A facile method for the homogeneous synthesis of cyanoethyl cellulose in NaOH/urea aqueous solutions. Polym Chem 2010;1:1662–8. https://doi.org/10.1039/c0py00163e.Search in Google Scholar

166. Liu, D, Xia, K, Yang, R. Synthetic pathways of regioselectively substituting cellulose derivatives: a review. Curr Org Chem 2012;16:1838–49. https://doi.org/10.2174/138527212802651269.Search in Google Scholar

167. Kang, HL, Liu, RG, Huang, Y. Graft modification of cellulose: methods, properties and applications. Polymer 2015;70:A1–16. https://doi.org/10.1016/j.polymer.2015.05.041.Search in Google Scholar

168. Tang, JT, Lee, MFX, Zhang, W, Zhao, BX, Berry, RM, Tam, KC. Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino) ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 2014;15:3052–60. https://doi.org/10.1021/bm500663w.Search in Google Scholar PubMed

169. Zoppe, JO, Habibi, Y, Rojas, OJ, Venditti, RA, Johansson, LS, Efimenko, K, et al.. Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 2010;11:2683–91. https://doi.org/10.1021/bm100719d.Search in Google Scholar PubMed

170. Joubert, F, Musa, OM, Hodgson, DRW, Cameron, NR. The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 2014;43:7217–35. https://doi.org/10.1039/c4cs00053f.Search in Google Scholar PubMed

171. Malmstrom, E, Carlmark, A. Controlled grafting of cellulose fibres – an outlook beyond paper and cardboard. Polym Chem 2012;3:1702–13. https://doi.org/10.1039/c1py00445j.Search in Google Scholar

172. Meng, T, Gao, X, Zhang, J, Yuan, JY, Zhang, YZ, He, JS. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 2009;50:447–54. https://doi.org/10.1016/j.polymer.2008.11.011.Search in Google Scholar

173. Hansson, S, Ostmark, E, Carlmark, A, Malmstrom, E. Arget ATRP for versatile grafting of cellulose using various monomers. ACS Appl Mater Interfaces 2009;1:2651–9. https://doi.org/10.1021/am900547g.Search in Google Scholar PubMed

174. Roy, D, Knapp, JS, Guthrie, JT, Perrier, S. Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 2008;9:91–9. https://doi.org/10.1021/bm700849j.Search in Google Scholar PubMed

175. Carlmark, A, Malmström, E. Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 2002;124:900–1. https://doi.org/10.1021/ja016582h.Search in Google Scholar PubMed

176. Thakur, VK, Thakur, MK, Gupta, RK. Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 2013;97:18–25. https://doi.org/10.1016/j.carbpol.2013.04.069.Search in Google Scholar PubMed

177. Carlmark, A, Larsson, E, Malmstrom, E. Grafting of cellulose by ring-opening polymerisation – a review. Eur Polym J 2012;48:1646–59. https://doi.org/10.1016/j.eurpolymj.2012.06.013.Search in Google Scholar

178. Li, YX, Liu, RG, Huang, Y. Synthesis and phase transition of cellulose-graft-poly (ethylene glycol) copolymers. J Appl Polym Sci 2008;110:1797–803. https://doi.org/10.1002/app.28541.Search in Google Scholar

179. Vlcek, P, Janata, M, Latalova, P, Dybal, J, Spirkova, M, Toman, L. Bottlebrush-shaped copolymers with cellulose diacetate backbone by a combination of ring opening polymerization and ATRP. J Polym Sci Polym Chem 2008;46:564–73.10.1002/pola.22406Search in Google Scholar

180. Liang, WC, Hou, J, Fang, XC, Bai, FD, Zhu, TH, Gao, FF, et al.. Synthesis of cellulose diacetate based copolymer electrospun nanofibers for tissues scaffold. Appl Surf Sci 2018;443:374–81. https://doi.org/10.1016/j.apsusc.2018.02.087.Search in Google Scholar

181. Kalia, S, Kaith, BS, Kaur, I. Cellulose fibers: bio- and nano-polymer composites. Spring-Verlag Berlin Heidelberg; 2011.10.1007/978-3-642-17370-7Search in Google Scholar

182. Uihlein, A, Schebek, L. Environmental impacts of a lignocellulose feedstock biorefinery system: an sssessment. Biomass Bioenergy 2009;33:793–802. https://doi.org/10.1016/j.biombioe.2008.12.001.Search in Google Scholar

183. Zhou, X, Su, J, Wang, C, Fang, C, He, X, Lei, W, et al.. Design, preparation and measurement of protein/CNTs hybrids: a concise review. J Mater Sci Technol 2020;46:74–87. https://doi.org/10.1016/j.jmst.2020.01.008.Search in Google Scholar

184. Li, QQ, McGinnis, S, Sydnor, C, Wong, A, Renneckar, S. Nanocellulose life cycle assessment. ACS Sustain Chem Eng 2013;1:919–28. https://doi.org/10.1021/sc4000225.Search in Google Scholar

185. Kontturi, E, Laaksonen, P, Linder, MB, Nonappa, Groschel, AH, Rojas, OJ, et al.. Advanced materials through assembly of nanocelluloses. Adv Mater 2018;30:1703779. https://doi.org/10.1002/adma.201703779.Search in Google Scholar PubMed

186. Azeredo, HMC, Rosa, MF, Mattoso, LHC. Nanocellulose in bio-based food packaging applications. Ind Crop Prod 2017;97:664–71. https://doi.org/10.1016/j.indcrop.2016.03.013.Search in Google Scholar

187. Chen, MY, Kang, HL, Gong, YM, Guo, J, Zhang, H, Liu, RG. Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 2015;7:21717–26. https://doi.org/10.1021/acsami.5b07150.Search in Google Scholar PubMed

188. Olsson, RT, Samir, MASA, Salazar-Alvarez, G, Belova, L, Strom, V, Berglund, LA, et al.. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 2010;5:584–8. https://doi.org/10.1038/nnano.2010.155.Search in Google Scholar PubMed

189. Brodin, M, Vallejos, M, Opedal, MT, Area, MC, Chinga-Carrasco, G. Lignocellulosics as sustainable resources for production of bioplastics-A review. J Clean Prod 2017;162:646–64. https://doi.org/10.1016/j.jclepro.2017.05.209.Search in Google Scholar

190. Kolakovic, R, Laaksonen, T, Peltonen, L, Laukkanen, A, Hirvonen, J. Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 2012;430:47–55. https://doi.org/10.1016/j.ijpharm.2012.03.031.Search in Google Scholar PubMed

191. Zhong, LX, Fu, SY, Zhou, XS, Zhan, HY. Effect of surface microfibrillation of sisal fibre on the mechanical properties of sisal/aramid fibre hybrid composites. Compos Appl Sci Manuf 2011;42:244–52. https://doi.org/10.1016/j.compositesa.2010.11.010.Search in Google Scholar

Published Online: 2021-04-19

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Reviews
  3. Magnetic characterization of magnetoactive elastomers containing magnetic hard particles using first-order reversal curve analysis
  4. Microscopic understanding of particle-matrix interaction in magnetic hybrid materials by element-specific spectroscopy
  5. Biodeinking: an eco-friendly alternative for chemicals based recycled fiber processing
  6. Bio-based polyurethane aqueous dispersions
  7. Cellulose-based polymers
  8. Biodegradable shape-memory polymers and composites
  9. Natural substances in cancer—do they work?
  10. Personalized and targeted therapies
  11. Identification of potential histone deacetylase inhibitory biflavonoids from Garcinia kola (Guttiferae) using in silico protein-ligand interaction
  12. Chemical computational approaches for optimization of effective surfactants in enhanced oil recovery
  13. Social media and learning in an era of coronavirus among chemistry students in tertiary institutions in Rivers State
  14. Techniques for the detection and quantification of emerging contaminants
  15. Occurrence, fate, and toxicity of emerging contaminants in a diverse ecosystem
  16. Updates on the versatile quinoline heterocycles as anticancer agents
  17. Trends in microbial degradation and bioremediation of emerging contaminants
  18. Power to the city: Assessing the rooftop solar photovoltaic potential in multiple cities of Ecuador
  19. Phytoremediation as an effective tool to handle emerging contaminants
  20. Recent advances and prospects for industrial waste management and product recovery for environmental appliances: a review
  21. Integrating multi-objective superstructure optimization and multi-criteria assessment: a novel methodology for sustainable process design
  22. A conversation on the quartic equation of the secular determinant of methylenecyclopropene
  23. Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules
  24. An overview of in silico methods used in the design of VEGFR-2 inhibitors as anticancer agents
  25. Fragment based drug design
  26. Advances in heterocycles as DNA intercalating cancer drugs
  27. Systems biology–the transformative approach to integrate sciences across disciplines
  28. Pharmaceutical interest of in-silico approaches
  29. Membrane technologies for sports supplementation
  30. Fused pyrrolo-pyridines and pyrrolo-(iso)quinoline as anticancer agents
  31. Membrane applications in the food industry
  32. Membrane techniques in the production of beverages
  33. Statistical methods for in silico tools used for risk assessment and toxicology
  34. Dicarbonyl compounds in the synthesis of heterocycles under green conditions
  35. Green synthesis of triazolo-nucleoside conjugates via azide–alkyne C–N bond formation
  36. Anaerobic digestion fundamentals, challenges, and technological advances
  37. Survival is the driver for adaptation: safety engineering changed the future, security engineering prevented disasters and transition engineering navigates the pathway to the climate-safe future
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2020-0067/html
Scroll to top button