Startseite Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels

  • Kadir Erol ORCID logo , Gönül Arslan Akveran , Kazım Köse EMAIL logo und Dursun Ali Köse ORCID logo
Veröffentlicht/Copyright: 31. Mai 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Lactase, which can cause lactose intolerance in its deficiency, is a vital enzyme concerning digestion. To overcome lactose intolerance for patients with digestion problem depending of this kind of issue, lactose in food should be removed. In this study, lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-aspartic acid), poly(HEMA-MAsp), cryogels were synthesized to reduce the amount of lactose content of milk samples. Occurrence of desired bounds, structural integrity, and surface characteristics were analyzed via Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscope (SEM), micro computed tomography (CT), and confocal microscope methods. Water retention characteristic were tested in solution with different electrolytic nature. Adsorption parameters were optimized in an aqueous medium. The adsorption performance of imprinted cryogels was studied in milk samples obtained from cow, sheep, goat, buffalo, and from human volunteers at different intervals after birth. Amount of lactose adsorbed in aqueous media and milk sample from humans were 322 (56.7%) and 179.5 (5.94%) mg lactose/g polymer, respectively. Selectivity studies revealed an approximately 8-fold increase in adsorption rate of molecularly imprinted cryogels as compared to that of nonimprinted cryogels. In addition, competitive adsorption was conducted using lactose-imprinted cryogels in aqueous media containing lactose, glucose, and galactose molecules resulting in adsorption rates of 220.56, 57.87, and 61.65 mg biomolecule/g polymer, respectively.


Corresponding author: Kazım Köse, Department of Joint Courses, Hitit University, Çorum19030, Turkey, E-mail:

Funding source: Hitit University

Award Identifier / Grant number: ALACA19001.17.001

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by Hitit University Scientific Research Projects Coordination Unit with the project ALACA19001.17.001.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Garballo-Rubio, A., Soto-Chinchilla, J., Moreno, A., Zafra-Gómez, A. J. Food Compos. Anal. 2018, 66, 39–45. https://doi.org/10.1016/j.jfca.2017.11.006.Suche in Google Scholar

2. van Scheppingen, W. B., van Hilten, P. H., Vijverberg, M. P., Duchateau, A. L. J. Chromatogr. B 2017, 1060, 395–399. https://doi.org/10.1016/j.jchromb.2017.06.024.Suche in Google Scholar

3. Sudsa-Ard, K., Kijboonchoo, K., Chavasit, V., Chaunchaiyakul, R., Nio, A. Q. X., Lee, J. K. W. J. Int. Soc. Sports Nutr. 2014, 11, 1–6. https://doi.org/10.1186/s12970-014-0049-4.Suche in Google Scholar

4. Vieira, D. C., Lima, L. N., Mendes, A. A., Adriano, W. S., Giordano, R. C., Giordano, R. L., Tardioli, P. W. Biochem. Eng. J. 2013, 81, 54–64. https://doi.org/10.1016/j.bej.2013.10.007.Suche in Google Scholar

5. Gille, D., Walther, B., Badertscher, R., Bosshart, A., Brügger, C., Brühlhart, M., Gauch, R., Noth, P., Vergères, G., Egger, L. Int. Dairy J. 2018, 83, 17–19. https://doi.org/10.1016/j.idairyj.2018.03.003.Suche in Google Scholar

6. Morlock, G. E., Morlock, L. P., Lemo, C. J. Chromatogr. A 2014, 1324, 215–223. https://doi.org/10.1016/j.chroma.2013.11.038.Suche in Google Scholar

7. Wolf, M., Gasparin, B. C., Paulino, A. T. Int. J. Biol. Macromol. 2018, 115, 157–164. https://doi.org/10.1016/j.ijbiomac.2018.04.058.Suche in Google Scholar

8. Batista, K., Silva, C., Fernandes, P., Campos, I., Fernandes, K. Sep. Purif. Technol. 2017, 185, 54–60. https://doi.org/10.1016/j.seppur.2017.05.019.Suche in Google Scholar

9. Datta, D., Pohlentz, G., Schulte, M., Kaiser, M., Goycoolea, F. M., Müthing, J., Mormann, M., Swamy, M. J. Arch. Biochem. Biophys. 2016, 609, 59–68. https://doi.org/10.1016/j.abb.2016.09.009.Suche in Google Scholar

10. Doğan, T., Bayram, E., Uzun, L., Şenel, S., Denizli, A. J. Appl. Polym. Sci. 2015, 132.10.1002/app.41981Suche in Google Scholar

11. Kim, M. Y., Lee, T. G. Chemosphere 2019, 217, 423–429. https://doi.org/10.1016/j.chemosphere.2018.10.021.Suche in Google Scholar

12. Santos, T., Brito, A., Boto, R., Sousa, P., Almeida, P., Cruz, C., Tomaz, C. Sep. Purif. Technol. 2018, 206, 192–198. https://doi.org/10.1016/j.seppur.2018.06.002.Suche in Google Scholar

13. Niyomdecha, S., Limbut, W., Numnuam, A., Asawatreratanakul, P., Kanatharana, P., Thavarungkul, P. Sens. Actuators, B 2017, 241, 473–481. https://doi.org/10.1016/j.snb.2016.10.102.Suche in Google Scholar

14. Sahiner, N., Demirci, S. Mater. Des. 2017, 120, 47–55. https://doi.org/10.1016/j.matdes.2017.02.004.Suche in Google Scholar

15. Luo, L-J., Lai, J-Y., Chou, S-F., Hsueh, Y-J., Ma, D. H-K. Acta Biomater. 2018, 65, 123–136. https://doi.org/10.1016/j.actbio.2017.11.018.Suche in Google Scholar

16. Petrov, P., Mokreva, P., Kostov, I., Uzunova, V., Tzoneva, R. Carbohydr. Polym. 2016, 140, 349–355. https://doi.org/10.1016/j.carbpol.2015.12.069.Suche in Google Scholar

17. Atta, A. M., Ezzat, A. O., Al-Hussain, S. A., Al-Lohedan, H. A., Tawfeek, A. M., Hashem, A. I. React. Funct. Polym. 2018, 131, 420–429. https://doi.org/10.1016/j.reactfunctpolym.2018.08.019.Suche in Google Scholar

18. Liang, L., Zhou, M., Yang, W., Jiang, L. Chem. Eng. J. 2018, 352, 673–681. https://doi.org/10.1016/j.cej.2018.07.072.Suche in Google Scholar

19. Koshy, S. T., Zhang, D. K., Grolman, J. M., Stafford, A. G., Mooney, D. J. Acta Biomater. 2018, 65, 36–43. https://doi.org/10.1016/j.actbio.2017.11.024.Suche in Google Scholar

20. Sarıca, B., Köse, K., Uzunoğlu, A., Erol, K., Köse, D. A. Chromatographia 2018, 81, 127–137.10.1007/s10337-017-3419-7Suche in Google Scholar

21. Erol, K., Köse, K., Avcı, E., Köse, D. A. J. Macromol. Sci., Part A: Pure Appl.Chem. 2017, 54, 902–907. https://doi.org/10.1080/10601325.2017.1381852.Suche in Google Scholar

22. Köse, K., Uzun, L. J. Sep. Sci. 2016, 39, 1998–2005. https://doi.org/10.1002/jssc.201600199.Suche in Google Scholar

23. Erol, K., Köse, K., Köse, D. A., Sızır, Ü., Tosun Satır, İ., Uzun, L. Desalin. Water Treat. 2016, 57, 9307–9317. https://doi.org/10.1080/19443994.2015.1030708.Suche in Google Scholar

24. Erol, K. J. Turk. Chem. Soc., Sect. A., 4, 133–148.10.18596/jotcsa.287321Suche in Google Scholar

25. Yilmaz, F., Kose, K., Sari, M. M., Demirel, G., Uzun, L., Denizli, A. Colloids Surf., B 2013, 109, 176–182. https://doi.org/10.1016/j.colsurfb.2013.03.041.Suche in Google Scholar

26. Erol, K. J. Macromol. Sci., Part A: Pure Appl.Chem. 2016, 53, 629–635. https://doi.org/10.1080/10601325.2016.1212310.Suche in Google Scholar

27. Erol, K., Cebeci, B. K., Köse, K., Köse, D. A. Int. J. Biol. Macromol. 2019, 123, 738–743. https://doi.org/10.1016/j.ijbiomac.2018.11.121.Suche in Google Scholar

28. Bilgin, E., Erol, K., Köse, K., Köse, D. A. Environ. Sci. Pollut. Res. 2018, 25, 27614–27627. https://doi.org/10.1007/s11356-018-2784-6.Suche in Google Scholar

29. Erol, K., Uzunoglu, A., Köse, K., Sarıca, B., Avcı, E., Köse, D. A. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2018, 1081-1082, 1–7. https://doi.org/10.1016/j.jchromb.2018.02.017.Suche in Google Scholar

30. Köse, K., Köse, D. A. Environ. Sci. Pollut. Res. 2017, 24, 9187–9193.https://doi.org/10.1007/s11356-017-8576-6.Suche in Google Scholar

31. Andaç, M., Galaev, I. Y., Denizli, A. J. Chromatogr. B 2016, 1021, 69–80. https://doi.org/10.1016/j.jchromb.2015.09.034.Suche in Google Scholar

32. Hur, D., Ekti, S. F., Say, R. Lett. Org. Chem. 2007, 4, 585–587. https://doi.org/10.2174/157017807782795556.Suche in Google Scholar

33. Erol, K., Köse, K. Artif. Cells, Nanomed., Biotechnol. 2017, 45, 39–45. https://doi.org/10.1080/21691401.2016.1233112.Suche in Google Scholar

34. Kanwal, R., Ahmed, T., Mirza, B. Asian J. Plant Sci. 2004, 3, 300–305. https://doi.org/10.3923/ajps.2004.300.305.Suche in Google Scholar

35. Morriss, F. H., Brewer, E. D., Spedale, S. B., Riddle, L., Temple, D. M., Caprioli, R. M., West, M. S. Pediatrics 1986, 78, 458–464.10.1542/peds.78.3.458Suche in Google Scholar

36. Bobbo, T., Cecchinato, A., Cipolat-Gotet, C., Stocco, G., Bittante, G. Acta Agraria Kaposváriensis 2014, 18, 81–88.Suche in Google Scholar

37. Yang, T., Li, H., Wang, F., Liu, X., Li, Q. Asian-Australas. J. Anim. Sci. 2013, 26, 896. https://doi.org/10.5713/ajas.2012.12677.Suche in Google Scholar

38. Wang, X., Wang, X., Liu, J., Wang, K., Zhao, R., Yang, S. Microchem. J. 2020, 159, 105359. https://doi.org/10.1016/j.microc.2020.105359.Suche in Google Scholar

39. Galhoum, A. A., Hassan, K. M., Desouky, O. A., Masoud, A. M., Akashi, T., Sakai, Y., Guibal, E. React. Funct. Polym. 2017, 113, 13–22. https://doi.org/10.1016/j.reactfunctpolym.2017.02.001.Suche in Google Scholar

40. Ye, X., Li, H., Wang, Q., Chai, R., Ma, C., Gao, H., Mao, J. Ecotoxicol. Environ. Saf. 2018, 148, 418–425. https://doi.org/10.1016/j.ecoenv.2017.10.056.Suche in Google Scholar

41. Monaco, G. J. Math. Chem. 2011, 49, 1544–1557. https://doi.org/10.1007/s10910-011-9840-5.Suche in Google Scholar

42. Christov, S. Int. J. Quantum Chem. 1977, 12, 495–503. https://doi.org/10.1002/qua.560120308.Suche in Google Scholar

43. Trautz, M. Z. Anorg. Allg. Chem. 1916, 96, 1–28. https://doi.org/10.1002/zaac.19160960102.Suche in Google Scholar

44. Ingavle, G. C., Baillie, L. W., Zheng, Y., Lis, E. K., Savina, I. N., Howell, C. A., Mikhalovsky, S. V., Sandeman, S. R. Biomaterials 2015, 50, 140–153. https://doi.org/10.1016/j.biomaterials.2015.01.039.Suche in Google Scholar

45. Hadizadeh, F., Hassanpour Moghadam, M., Mohajeri, S. A. J. Sci. Food Agric. 2013, 93, 304–309. https://doi.org/10.1002/jsfa.5757.Suche in Google Scholar

46. Yin, C., Du, J. Phys. A (Amsterdam, Neth.) 2014, 407, 119–127. https://doi.org/10.1016/j.physa.2014.03.057.Suche in Google Scholar

47. Fil, B. A., Ozmetin, C. J. Chem. Soc. Pak. 2012, 34, 896–906.Suche in Google Scholar

48. de Castro, L. A., Brasil, C. A., Napolitano, Rd. J. Ann. Phys. 2018, 392, 272–286. https://doi.org/10.1016/j.aop.2018.03.014.Suche in Google Scholar

49. Balieiro, A., Santos, R., Pereira, M., Figueiredo, R., Freitas, L., de Alsina, O., Lima, A., Soares, C. Braz. J. Chem. Eng. 2016, 33, 361–372. https://doi.org/10.1590/0104-6632.20160332s20140089.Suche in Google Scholar

50. Bakhshpour, M., Idil, N., Perçin, I., Denizli, A. Appl. Sci. 2019, 9, 553. https://doi.org/10.3390/app9030553.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0176).


Received: 2020-07-08
Accepted: 2021-04-23
Published Online: 2021-05-31
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0176/html?lang=de
Button zum nach oben scrollen