Abstract
In this study, electrospinning was selected to fabricate randomly oriented polyurethane (PU) nanofibers for tissue engineering application, and the surface of scaffolds was exposed to oxygen plasma flow. The morphology structure of the PU scaffolds before and after oxygen plasma treatment was observed using scanning electron microscopy (SEM) micrographs, and the fiber diameter distribution was measured using Image J software. The results demonstrated that oxygen plasma modification reduces the fiber diameter without any other special effects on fiber microstructure. Water drop contact angle and swelling ratio of PU constructs were performed to estimate the water-scaffolds interactions. The results revealed improvement of hydrophilicity by oxygen plasma treatment. Atomic force microscopy test was done to analyze a topological characteristic of the scaffolds, and it was found out that oxygen plasma treatment decreases the roughness of the scaffolds. The biological behavior of the scaffolds was investigated by SEM observation and MTT assay after L-929 fibroblast cells culture. In vitro assays demonstrated biocompatibility, cellular attachments, and filopodia formation on plasma modified samples. These results suggest that oxygen plasma treatment improves the physicochemical and biological properties of PU scaffolds to create a more hydrophilic surface which facilitates cell attachments and proliferation.
References
[1] Neo PY, Teh TKH, Tay ASR, Asuncion MCT, Png SN, Toh SL, Goh JCH. Connect. Tissue Res. 2016, 57, 428–442.10.3109/03008207.2016.1173035Suche in Google Scholar
[2] Santisteban-Espejo A, Campos F, Martin-Piedra L, Durand-Herrera D, Moral-Munoz JA, Campos A, Martin-Piedra MA. Tissue Eng. Part A 2018, 24, 1504–1517.10.1089/ten.tea.2018.0007Suche in Google Scholar
[3] Teixeira BN, Aprile P, Mendonça RH, Kelly DJ, Thiré RMDSM. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 1–13.Suche in Google Scholar
[4] Ye J, Wang J, Zhu Y, Wei Q. Biomed. Mater. 2016, 11, 025021.10.1088/1748-6041/11/2/025021Suche in Google Scholar
[5] Arabi N, Zamanian A, Rashvand SN, Ghorbani F. Macromol. Mater. Eng. 2018, 303, 1700539.10.1002/mame.201700539Suche in Google Scholar
[6] Yang C, Wu H, Chen S, Kang G. Biomed. Eng./Biomed. Tech. 2018, 63, 255–259.10.1515/bmt-2017-0185Suche in Google Scholar
[7] Aidun A, Zamanian A, Ghorbani F. Biotechnol. Appl. Biochem. 2019, 66. 43–52.10.1002/bab.1694Suche in Google Scholar
[8] Liu L, Shi G, Cui Y, Li H, Li Z, Zeng Q, Guo Y. Biomed. Eng./Biomed. Tech. 2017, 62, 467–479.10.1515/bmt-2016-0005Suche in Google Scholar
[9] Shi W, Sun M, Hu X, Ren B, Cheng J, Li C, Duan X, Fu X, Zhang J, Chen H, Ao Y. Adv. Mater. 2017, 29, 1–7.10.1002/adma.201701089Suche in Google Scholar
[10] Ayyar M, Mani MP, Jaganathan SK, Rathanasamy R. Biomed. Eng./Biomed. Tech. 2018, 63, 245–253.10.1515/bmt-2017-0022Suche in Google Scholar
[11] Nsengimana J, Van der Walt JG. 17th Annual Conference of the Rapid Product Development Association of South Africa. Stellenbosch University: Stellenbosch, South Africa, 2016, 1, 53–61.Suche in Google Scholar
[12] Safikhani MM, Zamanian A, Ghorbani F, Asefnejad A, Shahrezaee M. J. Polym. Eng. 2017, 37, 933–941.10.1515/polyeng-2016-0291Suche in Google Scholar
[13] Kamoun EA, Kenawy ERS, Chen X. J. Adv. Res. 2017, 8, 217–233.10.1016/j.jare.2017.01.005Suche in Google Scholar
[14] Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M. Biomaterials 2003, 24, 5163–5171.10.1016/S0142-9612(03)00462-9Suche in Google Scholar
[15] Alperin C, Zandstra PW, Woodhouse KA. Biomaterials 2005, 26, 7377–7386.10.1016/j.biomaterials.2005.05.064Suche in Google Scholar PubMed
[16] Dong Z, Li Y, Zou Q. Appl. Surf. Sci. 2009, 255, 6087–6091.10.1016/j.apsusc.2009.01.083Suche in Google Scholar
[17] Gerges I, Martello F, Tamplenizza M, Tocchio A. Foamed polyurethane polymers for the regeneration of connective tissue, U.S. Patent Application No. 15/305,904, 2017.Suche in Google Scholar
[18] Ganta SR, Piesco NP, Long P, Gassner R, Motta LF, Papworth GD, Stolz DB, Watkins SC. J. Biomed. Mater. Res. A 2016, 179, 95–105.Suche in Google Scholar
[19] Seyedmehdi SA, Ebrahimi M. Prog. Org. Coat. 2018, 123, 134–137.10.1016/j.porgcoat.2018.07.010Suche in Google Scholar
[20] Wang YF, Barrera CM, Dauer EA, Gu W, Andreopoulos F, Huang CYC. J. Mech. Behav. Biomed. Mater. 2017, 65, 657–664.10.1016/j.jmbbm.2016.09.029Suche in Google Scholar PubMed
[21] Smith S, Busso M, McClaren M, Bass LS. Dermatol. Surg. 2007, 33, S112–S121.10.1097/00042728-200712001-00002Suche in Google Scholar
[22] Ozdemir Y, Hasirci N, Serbetci K. J. Mater. Sci. Mater. Med. 2002, 13, 1147–1151.10.1023/A:1021185803716Suche in Google Scholar
[23] Ghorbani F, Zamanian A. E-Polymers 2018, 18, 275–285.10.1515/epoly-2017-0185Suche in Google Scholar
[24] Sharma K, Kumar V, Kaith BS, Som S, Kumar V, Pandey A, Kalia S, Swart HC. Ind. Eng. Chem. Res. 2015, 54, 1982–1991.10.1021/ie5044743Suche in Google Scholar
[25] Yucel D, Kose GT, Hasirci V. Biomacromolecules 2010, 11, 3584–3591.10.1021/bm1010323Suche in Google Scholar PubMed
[26] Wu J, Xie L, Lin WZY, Chen Q. Drug Discov. Today 2017, 22, 1375–1384.10.1016/j.drudis.2017.03.007Suche in Google Scholar PubMed
[27] Thompson CJ, Chase GG, Yarin AL, Reneker DH. Polymer 2007, 48, 6913–6922.10.1016/j.polymer.2007.09.017Suche in Google Scholar
[28] Correia DM, Ribeiro C, Sencadas V, Botelho G, Carabineiro SAC, Ribelles JLG, Lanceros-Méndez S. Prog. Org. Coat. 2015, 85, 151–158.10.1016/j.porgcoat.2015.03.019Suche in Google Scholar
[29] Zandén C, Voinova M, Gold J, Mörsdorf D, Bernhardt I, Liu J. Eur. Polym. J. 2012, 48, 472–482.10.1016/j.eurpolymj.2012.01.004Suche in Google Scholar
[30] Rangel-Vazquez N-A, Sánchez-López C, Felix FR. Polímeros 2014, 24, 453–463.10.1590/0104-1428.1496Suche in Google Scholar
[31] Park J-M, Kim D-S, Kim S-R. J. Colloid Interf. Sci. 2003, 264, 431–445.10.1016/S0021-9797(03)00419-3Suche in Google Scholar
[32] Kara F, Aksoy EA, Yuksekdag Z, Hasirci N, Aksoy S. Carbohydr. Polym. 2014, 112, 39–47.10.1016/j.carbpol.2014.05.019Suche in Google Scholar
[33] Unnithan AR, Sasikala ARK, Murugesan P, Gurusamy M, Wu D, Park CH, Kim CS. Int. J. Biol. Macromol. 2015, 77, 1–8.10.1016/j.ijbiomac.2015.02.044Suche in Google Scholar
[34] Guan J, Fujimoto KL, Sacks MS, Wagner WR. Biomaterials 2005, 14, 384–399.Suche in Google Scholar
[35] Kim KS, Lee KH, Cho K, Park CE. J. Memb. Sci. 2002, 199, 135–145.10.1016/S0376-7388(01)00686-XSuche in Google Scholar
[36] Solouk A, Cousins BG, Mirzadeh H, Seifalian AM. Biotechnol. Appl. Biochem. 2011, 58, 311–327.10.1002/bab.50Suche in Google Scholar PubMed
[37] Lin C-C, Fu S-J. Mater. Sci. Eng. C 2016, 58, 254–263.10.1016/j.msec.2015.08.009Suche in Google Scholar PubMed
[38] Saghebasl S, Davaran S, Rahbarghazi R, Montaseri A, Salehi R, Ramazani A. J. Biomater. Sci. Polym. Ed. 2018, 29, 1185–1206.10.1080/09205063.2018.1447627Suche in Google Scholar PubMed
[39] Li F, Ye J, Yang L, Deng C, Tian Q, Yang B. Appl. Surf. Sci. 2015, 345, 301–309.10.1016/j.apsusc.2015.03.189Suche in Google Scholar
[40] Killion JA, Kehoe S, Geever LM, Devine DM, Sheehan E, Boyd D, Higginbotham CL. Mater. Sci. Eng. C 2013, 33, 4203–4212.10.1016/j.msec.2013.06.013Suche in Google Scholar PubMed
[41] Pappa AM, Karagkiozaki V, Krol S, Kassavetis S, Konstantinou D, Pitsalidis C, Tzounis L, Pliatsikas N, Logothetidis S. Beilstein J. Nanotechnol. 2015, 6, 254–262.10.3762/bjnano.6.24Suche in Google Scholar PubMed PubMed Central
[42] Doliška A, Vesel A, Kolar M, Stana-Kleinschek K, Mozetič M. Surf. Interface Anal. 2012, 44, 56–61.10.1002/sia.3769Suche in Google Scholar
[43] Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A. Acta Biomater. 2014, 10, 1–31.10.1016/j.actbio.2013.09.034Suche in Google Scholar PubMed PubMed Central
[44] Liu W, Zhan J, Su Y, Wu T, Wu C, Ramakrishna S, Mo X, Al-Deyab SS, El-Newehy M. Colloid. Surface. B 2014, 113, 101–106.10.1016/j.colsurfb.2013.08.031Suche in Google Scholar PubMed
[45] Shen H, Hu X, Yang F, Bei J, Wang S. Biomaterials 2007, 28, 4219–4230.10.1016/j.biomaterials.2007.06.004Suche in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Thermal stability of xanthan gum biopolymer and its application in salt-tolerant bentonite water-based mud
- Thermal stability and dynamic mechanical behavior of functional multiphase boride ceramics/epoxy composites
- Influence of radiation-crosslinking on the elongation behaviour of glass-fibre-filled sheets in the thermoforming process
- Physicochemical and biological investigation of oxygen plasma modified electrospun polyurethane scaffolds for connective tissue engineering application
- Role of polymer/polymer and polymer/drug specific interactions in drug delivery systems
- Preparation and assembly
- Development of antimicrobial and antifouling nanocomposite membranes by a phase inversion technique
- Preparation of nano-SiO2 compound antioxidant and its antioxidant effect on polyphenylene sulfide
- Influence of mixing energy on the solid-state behavior and clay fraction threshold of PA12/C30B® nanocomposites
- Engineering and processing
- Analysis of the formation of gap-based leakages in polymer-metal electronic systems with labyrinth seals
- Effect of gas on the polymer temperature in external gas-assisted injection molding
Artikel in diesem Heft
- Frontmatter
- Material properties
- Thermal stability of xanthan gum biopolymer and its application in salt-tolerant bentonite water-based mud
- Thermal stability and dynamic mechanical behavior of functional multiphase boride ceramics/epoxy composites
- Influence of radiation-crosslinking on the elongation behaviour of glass-fibre-filled sheets in the thermoforming process
- Physicochemical and biological investigation of oxygen plasma modified electrospun polyurethane scaffolds for connective tissue engineering application
- Role of polymer/polymer and polymer/drug specific interactions in drug delivery systems
- Preparation and assembly
- Development of antimicrobial and antifouling nanocomposite membranes by a phase inversion technique
- Preparation of nano-SiO2 compound antioxidant and its antioxidant effect on polyphenylene sulfide
- Influence of mixing energy on the solid-state behavior and clay fraction threshold of PA12/C30B® nanocomposites
- Engineering and processing
- Analysis of the formation of gap-based leakages in polymer-metal electronic systems with labyrinth seals
- Effect of gas on the polymer temperature in external gas-assisted injection molding