Abstract
This study focuses on the influence of mixing energy on the solid-state behavior and clay fraction threshold of nanocomposites. Thus, three polyamide12/clay (PA12/C30B®) nanocomposites exhibiting different nanostructures were prepared from three sets of processing conditions. Then, thermal and dynamical viscoelastic properties of these nanocomposites were analyzed, in relationship with the material nanostructure and processing conditions. For the first time, the solid-state properties of the nanocomposites revealed the existence of a critical specific mixing mechanical energy. Below this critical value, an increase of mechanical energy refines the structure, improving some end-use properties of the nanocomposite. Above this value, a high mixing energy supply is necessary in order to significantly modify the structure. They also highlighted that the clay fraction threshold, which is commonly attributed to the formation of a three-dimensional percolated network, decreases with increasing specific mixing energy, less significantly when this energy is superior to its critical value.
Acknowledgments
The authors thank Ludovic Teffo from the University of Brest and Emmanuel Penaud from the University of Tours for preparing PA12/C30B® specimens used in the dynamical mechanical thermal analysis tests. They also thank the Centre d’Etude et de Recherche sur les Matériaux Elastomères (CERMEL) of the Université François-Rabelais de Tours (37000), France, for the technical help provided.
References
[1] Sinha Ray S, Okamoto M. Prog. Polym. Sci. 2003, 28, 1539.10.1016/j.progpolymsci.2003.08.002Search in Google Scholar
[2] Gabr MH, Uzawa K. J. Thermoplast. Compos. Mater. 2018, 31, 447–464.10.1177/0892705717705692Search in Google Scholar
[3] Panda SS, Samal SK, Mohanty S, Nayak SK. J. Compos. Mater. 2018, 52, 531–542.10.1177/0021998317710707Search in Google Scholar
[4] Vaia RA, Giannelis EP. Macromolecule 1997, 30, 8000–8009.10.1021/ma9603488Search in Google Scholar
[5] Jian X, Xuebing W, Bingyao D, Qingsheng L. High Perform. Polym. 2016, 28, 618–629.10.1177/0954008315591194Search in Google Scholar
[6] Reichert P, Kressler J, Thomann R, Müllhaupt R, Stöppelmann G. Acta Polym. 1998, 49, 116–123.10.1002/(SICI)1521-4044(199802)49:2/3<116::AID-APOL116>3.0.CO;2-TSearch in Google Scholar
[7] Shelley JS, Mather PT, DeVries KL. Polymer 2001, 42, 5849–5858.10.1016/S0032-3861(00)00900-9Search in Google Scholar
[8] Vlasveld DPN, Bersee HEN, Picken SJ. Polymer 2005, 46, 10269–10278.10.1016/j.polymer.2005.08.003Search in Google Scholar
[9] Sengupta R, Bandyopadhyay A, Sabharwal S, Chaki TK, Bhowmick AK. Polymer 2005, 46, 3343–3354.10.1016/j.polymer.2005.02.104Search in Google Scholar
[10] Aït Hocine N, Médéric P, Aubry T. Polym. Test. 2008, 27, 330–339.10.1016/j.polymertesting.2007.12.002Search in Google Scholar
[11] Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH. Chem. Mater. 2000, 12, 1866–1873.10.1021/cm0001760Search in Google Scholar
[12] Tang Y, Hu Y, Wang S, Gui Z, Chen Z, Fan W. Polym. Adv. Technol. 2003, 14, 733–737.10.1002/pat.420Search in Google Scholar
[13] Koo CM, Ham HT, Choi MH, Kim SO, Chung IJ. Polymer 2002, 44, 681–689.10.1016/S0032-3861(02)00803-0Search in Google Scholar
[14] Messersmith PB, Giannelis EP. Chem. Mater. 1993, 5, 1064–1066.10.1021/cm00032a005Search in Google Scholar
[15] Alexandre B, Langevin D, Médéric P, Aubry T, Couderc H, Nguyen QT, Saiter A, Marais S. J. Membr. Sci. 2009, 328, 186–204.10.1016/j.memsci.2008.12.004Search in Google Scholar
[16] Alexandre M, Dubois P. Mater. Sci. Eng. 2000, 28, 1–63.10.1016/S0927-796X(00)00012-7Search in Google Scholar
[17] Aubry T, Razafinimaro T, Médéric P. J. Rheol. 2005, 49, 425–440.10.1122/1.1859791Search in Google Scholar
[18] Dennis H, Hunter D, Chang D, Kim S, White J, Cho J, Paul DR. Polymer 2001, 42, 9513–9522.10.1016/S0032-3861(01)00473-6Search in Google Scholar
[19] Shah RK, Paul DR. Polymer 2004, 45, 2991–3000.10.1016/j.polymer.2004.02.058Search in Google Scholar
[20] Zhu L, Xanthos M. J. Appl. Polym. Sci. 2004, 93, 1891–1899.10.1002/app.20658Search in Google Scholar
[21] Lertwimolnun W, Vergnes B. Polym. Eng. Sci. 2007, 47, 2100–2109.10.1002/pen.20934Search in Google Scholar
[22] Treece M, Zhang W, Moffitt R, Oberhauser J. Polym. Eng. Sci. 2007, 47, 898–911.10.1002/pen.20774Search in Google Scholar
[23] Domenech T, Peuvrel-Disdier E, Vergnes B. Int. Polym. Process. 2012, 27, 517–526.10.3139/217.2591Search in Google Scholar
[24] Barbas JM, Machado AV, Covas JA. Chem. Eng. Sci. 2014, 37, 257–266.10.1002/ceat.201300303Search in Google Scholar
[25] Di Y, Iannace S, Di Maio E, Nicolais L. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 670–678.10.1002/polb.10420Search in Google Scholar
[26] Sharma B, Chhibber R, Mehta R. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018, 10, 1–12.Search in Google Scholar
[27] Normand G, Peuvrel-Disdier E, Vergnes B. Intern. Polym. Process. 2017, 1, 129–137.10.3139/217.3318Search in Google Scholar
[28] Domenech T, Peuvrel-Disdier E, Vergnes B. Comp. Sci. Tech. 2013, 75, 7–14.10.1016/j.compscitech.2012.11.016Search in Google Scholar
[29] Médéric P, Aubry T, Razafinimaro T. Int. Polym. Process. 2009, 24, 261–266.10.3139/217.2247Search in Google Scholar
[30] Normand G, Peuvrel-Disdier E, Vergnes B. Int. Polym. Process. 2016, 31, 508–516.10.3139/217.3285Search in Google Scholar
[31] Yan L, Roth CB, Low PF. Langmuir 1996, 12, 4421–4429.10.1021/la960119eSearch in Google Scholar
[32] Cole KC. Macromolecules 2008, 41, 834–843.10.1021/ma0628329Search in Google Scholar
[33] Barbas JM, Machado A, Covas JA. Polym. Test. 2012, 31, 527–536.10.1016/j.polymertesting.2012.02.005Search in Google Scholar
[34] Loo L, Gleason K. Macromolecules 2003, 36, 2587–2590.10.1021/ma0259057Search in Google Scholar
[35] Ogata N, Kawakage S, Ogihara T. J. Appl. Polym. Sci. 1997, 66, 573–581.10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-WSearch in Google Scholar
[36] Jimenez G, Ogata N, Kawai H, Ogihara T. J. Appl. Polym. Sci. 1997, 64, 2211–2220.10.1002/(SICI)1097-4628(19970613)64:11<2211::AID-APP17>3.0.CO;2-6Search in Google Scholar
[37] Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT. Polym. Int. 2013, 62, 439–448.10.1002/pi.4331Search in Google Scholar
[38] Gloaguen JM, Lefebvre JM. Polymer 2001, 42, 5841–5847.10.1016/S0032-3861(00)00901-0Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Thermal stability of xanthan gum biopolymer and its application in salt-tolerant bentonite water-based mud
- Thermal stability and dynamic mechanical behavior of functional multiphase boride ceramics/epoxy composites
- Influence of radiation-crosslinking on the elongation behaviour of glass-fibre-filled sheets in the thermoforming process
- Physicochemical and biological investigation of oxygen plasma modified electrospun polyurethane scaffolds for connective tissue engineering application
- Role of polymer/polymer and polymer/drug specific interactions in drug delivery systems
- Preparation and assembly
- Development of antimicrobial and antifouling nanocomposite membranes by a phase inversion technique
- Preparation of nano-SiO2 compound antioxidant and its antioxidant effect on polyphenylene sulfide
- Influence of mixing energy on the solid-state behavior and clay fraction threshold of PA12/C30B® nanocomposites
- Engineering and processing
- Analysis of the formation of gap-based leakages in polymer-metal electronic systems with labyrinth seals
- Effect of gas on the polymer temperature in external gas-assisted injection molding
Articles in the same Issue
- Frontmatter
- Material properties
- Thermal stability of xanthan gum biopolymer and its application in salt-tolerant bentonite water-based mud
- Thermal stability and dynamic mechanical behavior of functional multiphase boride ceramics/epoxy composites
- Influence of radiation-crosslinking on the elongation behaviour of glass-fibre-filled sheets in the thermoforming process
- Physicochemical and biological investigation of oxygen plasma modified electrospun polyurethane scaffolds for connective tissue engineering application
- Role of polymer/polymer and polymer/drug specific interactions in drug delivery systems
- Preparation and assembly
- Development of antimicrobial and antifouling nanocomposite membranes by a phase inversion technique
- Preparation of nano-SiO2 compound antioxidant and its antioxidant effect on polyphenylene sulfide
- Influence of mixing energy on the solid-state behavior and clay fraction threshold of PA12/C30B® nanocomposites
- Engineering and processing
- Analysis of the formation of gap-based leakages in polymer-metal electronic systems with labyrinth seals
- Effect of gas on the polymer temperature in external gas-assisted injection molding