Home Influence of radiation-crosslinking on the elongation behaviour of glass-fibre-filled sheets in the thermoforming process
Article
Licensed
Unlicensed Requires Authentication

Influence of radiation-crosslinking on the elongation behaviour of glass-fibre-filled sheets in the thermoforming process

  • Lisa-Maria Wittmann EMAIL logo , Michael Wolf ORCID logo , Katharina Kurth and Dietmar Drummer
Published/Copyright: May 16, 2019
Become an author with De Gruyter Brill

Abstract

Thermoforming is one of the most important processes in polymer processing. In the packaging industry, thermoformed parts such as blister packs are manufactured from amorphous plastics such as polystyrene (PS) or polyvinyl chloride (PVC). In the field of semi-crystalline thermoplastics, mainly standard thermoplastics, such as, for example, polypropylene (PP), polyethylene (PE), or polyethylene terephthalate (PET), are used. There is limited literature dealing with the thermoforming of thin filled systems. Filler bonding, in particular, represents a major challenge in strain rheology. Electron irradiation is a way to generate improved filler-matrix bonding. In this study, the influence of fillers and radiation-crosslinking on the elongation behaviour and on the wall thickness distribution was investigated. At higher areal draw ratios, an enormous benefit of radiation-crosslinking of thin filled sheets is shown. While non-crosslinked specimens could not be formed, it was possible to thermoform radiation-crosslinked sheets filled with 10 vol.% glass fibres. Furthermore, with the higher areal draw ratio, the influence of the filler orientation on the stretching behaviour became more apparent.

Acknowledgements

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for funding the work in the project DR 421/20-1 “Vernetzte Halbzeuge für hochbeanspruchte Thermoformanwendungen”. The authors also extend their gratitude to their industrial partners BGS Beta-Gamma-Service GmbH & Co. KG, Bruchsal, Germany, for conducting the irradiation of the samples. Further thanks go to Pöppelmann GmbH & Co. KG Kunststoffwerk-Werkzeugbau (Lohne, Germany), SENOPLAST Klepsch & Co. GmbH (Piesendorf, Austria), and Teknor Germany GmbH (Tauberzell, Germany). The authors are also grateful to LyondellBasell, Industries N.V., Rotterdam, The Netherlands, for providing the material.

  1. Conflict of interest: The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] Throne JL. Understanding Thermoforming, 2nd ed., Carl Hanser Verlag GmbH & Co.: Munich, 2008.10.3139/9783446418554Search in Google Scholar

[2] Throne JL. Technology of Thermoforming, 2nd ed., Carl Hanser Verlag GmbH & Co.: Munich, 1996.10.3139/9783446402478Search in Google Scholar

[3] Engelmanns S. Advanced Thermoforming: Methods, Machines and Materials, Applications and Automation, 1st ed., Wiley: Hoboken, NJ, 2012.10.1002/9781118207086Search in Google Scholar

[4] Schwarzmann P. Thermoformen in der Praxis, 2nd ed., Carl Hanser Verlag GmbH & Co.: Munich, 2008.Search in Google Scholar

[5] William A. Applied Plastics Engineering Handbook. Processing, Materials, and Applications, 2nd ed., Kidlington: Oxford, UK, 2016, p. 345.Search in Google Scholar

[6] Lau HC, Bhattacharya SN, Field GJ. Polym. Eng. Sci. 2004, 7, 1564–1570.Search in Google Scholar

[7] Lau HC, Bhattacharya SN, Field GJ. Polym. Eng. Sci. 2004, 38, 1915–1923.10.1002/pen.10362Search in Google Scholar

[8] Yamaguchi M, Suzuki KI. J. Appl. Polym. Sci. 2002, 86, 79–83.10.1002/app.10915Search in Google Scholar

[9] Yamaguchi M. J. Polym. Sci. Part B: Polym. Phys. 2000, 39, 228–235.10.1002/1099-0488(20010115)39:2<228::AID-POLB50>3.0.CO;2-ZSearch in Google Scholar

[10] Rosenzweig N, Narkis M, Tadmor Z. Polym. Eng. Sci. 1979, 19, 946–951.10.1002/pen.760191311Search in Google Scholar

[11] Aroujalian A, Ngadi MO, Emondj P. Polym. Eng. Sci. 1997, 37, 178–182.10.1002/pen.11659Search in Google Scholar

[12] Lai MO. J. Appl. Polym. Sci. 1975, 7, 1805–1814.10.1002/app.1975.070190703Search in Google Scholar

[13] Jobey C, Allanic N, Mousseau P. AIP Conf. Proc. 2016, 1769.Search in Google Scholar

[14] Holbery J, Houston D. JOM 58, 2006, 11, 80–86.10.1007/s11837-006-0234-2Search in Google Scholar

[15] Lebrun G, Bureau MN, Denault J. J. Thermoplast. Compos. Mater. 2004, 17, 137–165.10.1177/0892705704035411Search in Google Scholar

[16] Lussier D, Chen J. J. Thermoplast. Compos. Mater. 2002, 15, 497–509.10.1177/0892705702015006205Search in Google Scholar

[17] Behrens BA, Raatz A, Hübner S, Bonk C, Bohne F, Bruns C, Micke-Camuz M. Proc. CIRP 2017, 66, 113–118.10.1016/j.procir.2017.03.294Search in Google Scholar

[18] Hineno S, Yoneyama T, Tatsuno D, Kimura M, Shiiozaski K, Moriyasu T, Okamoto M, Nagashima S. Proc. Eng. 2014, 81, 1614–1619.10.1016/j.proeng.2014.10.199Search in Google Scholar

[19] Mohan TP, Kanny K. J. Plast. Film Sheeting 2015, 32, 163–188.10.1177/8756087915590846Search in Google Scholar

[20] Averous L, Fringant C, Moro L. STARCH-STARKE 2001, 53, 368–371.10.1002/1521-379X(200108)53:8<368::AID-STAR368>3.0.CO;2-WSearch in Google Scholar

[21] Ekşia O, Erdoğan ES. UUJMS 2014, 1, 61–68.10.12748/uujms.201416501Search in Google Scholar

[22] Landsecker K, Bonten C. AIP Conf. Proc. 2019, 2055, 050003.10.1063/1.5084822Search in Google Scholar

[23] Landsecker K, Bonten C. AIP Conf. Proc. 2019, 2065, 030049.10.1063/1.5088307Search in Google Scholar

[24] Wypych G. Handbook of Fillers, 4th ed., ChemTec Publishing: Toronto, 2016.Search in Google Scholar

[25] Münstedt H. Rheological and Morphological Properties of Dispersed Polymeric Materials, Carl Hanser Verlag GmbH & Co. KG: Munich, 2016.10.3139/9781569906088.fmSearch in Google Scholar

[26] Shenoy AV. Rheology of Filled Polymer Systems, Kluwer: Dordrecht, 1999.10.1007/978-94-015-9213-0Search in Google Scholar

[27] Schoßig M. Schädigungsmechanismen in Faserverstärkten Kunststoffen, Vieweg and Teubner: Wiesbaden, 2011.10.1007/978-3-8348-9924-8Search in Google Scholar

[28] Makuuchi K. Radiation Processing of Polymer Materials and Its Industrial Applications, 1st ed., Wiley: Hoboken, NJ, 2012.10.1002/9781118162798Search in Google Scholar

[29] Manas M, Manas D, Stanek M, Ovsik M, Reznicek M, Gajzlerova L, Senkerik V, Skrobak A. Polymers 2018, 10, 158, doi:10.3390/polym10020158.Search in Google Scholar PubMed PubMed Central

[30] Ehrenstein GW. Faserverbund-Kunststoffe. Werkstoffe, Verarbeitung, Eigenschaften, 2nd ed., Carl Hanser Verlag GmbH & Co. KG.: Munich, 2006.10.3139/9783446457546Search in Google Scholar

[31] Neitzel M, Mitschang P, Breuer U. Handbuch Verbundwerkstoffe: Werkstoffe, Verarbeitung, Anwendung, 2nd ed., Carl Hanser Verlag GmbH & Co. KG.: Munich, 2014.10.3139/9783446436978.fmSearch in Google Scholar

Received: 2019-02-08
Accepted: 2019-04-14
Published Online: 2019-05-16
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0050/html
Scroll to top button