Home Development of antimicrobial and antifouling nanocomposite membranes by a phase inversion technique
Article
Licensed
Unlicensed Requires Authentication

Development of antimicrobial and antifouling nanocomposite membranes by a phase inversion technique

  • Zeenat Arif EMAIL logo , Naresh Kumar Sethy , Lata Kumari , Pradeep Kumar Mishra and Bhawna Verma
Published/Copyright: April 23, 2019
Become an author with De Gruyter Brill

Abstract

Membrane separation technology is preferred over conventional techniques because of its simple operation and high efficiency. The major drawback of using a pristine polymer for membrane application includes its rapid fouling tendency, which affects the separation efficiency of membranes; hence, they need to be modified using physical or chemical techniques. Recent developments involve the incorporation of nanoparticles within the polymer to achieve high efficiency along with stability. The hydrophobic membranes of polyvinylidene fluoride (PVDF) blended with titanium dioxide (TiO2) nanoparticles were synthesized using a phase inversion technique to develop an antifouling membrane. The effects of TiO2 loading on the permeation flux and antimicrobial behavior of the membranes were systematically investigated, and the experimental results were also justified using the theoretical model. Extended Derjaguin–Landau–Verwey–Overbeek, high-resolution scanning electron microscopy, and atomic force microscopy were used to study the membrane morphology. It was observed that the antimicrobial properties of different PVDF/TiO2 ratios against Gram-negative Escherichia coli (E. coli) showed excellent results compared with PVDF membrane. The antimicrobial activity was also evaluated to study the exponential growth phases’ retardation of E. coli over the membrane surface. The experimental result for bovine serum albumin filtration was also studied and high protein rejection was achieved for PVDF/TiO2 (1.5 wt%) membrane.

Acknowledgments

We acknowledge CIFC of IIT (BHU) for their AFM, HRSEM, and XRD characterization facilities.

References

[1] Huang H, Yu J, Guo H, Shen Y, Yang F, Wang H, Liu R, Liu Y. Appl. Surf. Sci. 2018, 427, 38–47.10.1016/j.apsusc.2017.08.004Search in Google Scholar

[2] Zhang X, Ma J, Tang CY, Wang Z, Ng HY, Wu Z. Environ. Sci. Technol. 2016, 50, 5086–5093.10.1021/acs.est.6b00902Search in Google Scholar PubMed

[3] Hong H, Peng W, Zhang M, Chen J, He Y, Wang F, Weng X, Yu H, Lin H. Bioresour. Technol. 2013, 146, 7–14.10.1016/j.biortech.2013.07.040Search in Google Scholar PubMed

[4] Chang H, Qu F, Liu B, Yu H, Li K, Shao S, Li G, Liang H. J. Membr. Sci. 2015, 493, 723–733.10.1016/j.memsci.2015.07.001Search in Google Scholar

[5] Wang Q, Wang Z, Wu Z. Desalination 2012, 297, 79–86.10.1016/j.desal.2012.04.020Search in Google Scholar

[6] Weis A, Bird MR, Nyström M, Wright C. Desalination 2005, 175, 73–85.10.1016/j.desal.2004.09.024Search in Google Scholar

[7] Kim DS, Kang JS, Lee YM. Sep. Sci. Technol. 2004, 39, 833–854.10.1081/SS-120028449Search in Google Scholar

[8] Huang Y, Wang Z, Yan X, Chen J, Guo Y, Lang W. J. Colloid Interface Sci. 2017, 505, 38–48.10.1016/j.jcis.2017.05.076Search in Google Scholar PubMed

[9] Meng FG, Chae SR, Shin HS. Environ. Eng. Sci. 2012, 29, 139–160.10.1089/ees.2010.0420Search in Google Scholar

[10] Pendergast MM, Hoek EMV. Energy Environ. Sci. 2011, 4, 1946–1971.10.1039/c0ee00541jSearch in Google Scholar

[11] Raghupathi KR, Koodali RT, Manna AC. Langmuir 2011, 27, 4020–4028.10.1021/la104825uSearch in Google Scholar PubMed

[12] Subramaniam MN, Goh PS, Lau WJ, Tan YH, Ng BC, Ismail AF. Chem. Eng. J. 2017, 316, 101–110.10.1016/j.cej.2017.01.088Search in Google Scholar

[13] Liu X, Chen Q, Lv L, Feng X, Meng X. Catal. Commun. 2015, 58, 30–33.10.1016/j.catcom.2014.08.032Search in Google Scholar

[14] Almeida NA, Martins PM, Teixeira S, Lopes da Silva JA, Sencadas V, Kühn K, Cuniberti G, Mendez SL, Marques PAAP. J. Mater. Sci. 2016, 51, 6974–6986.10.1007/s10853-016-9986-4Search in Google Scholar

[15] Safarpour M, Khataee A, Vatanpour V. Ind. Eng. Chem. Res. 2014, 53, 13370–13382.10.1021/ie502407gSearch in Google Scholar

[16] Wu Y, Jia W, An Q, Liu Y, Chen J, Li G. Nanotechnology 2009, 20, 245101–254108.10.1088/0957-4484/20/24/245101Search in Google Scholar PubMed

[17] Du JR, Peldszus S, Huck PM, Feng X. J. Membr. Sci. 2015, 475, 488–495.10.1016/j.memsci.2014.10.040Search in Google Scholar

[18] Wang Q, Wang Z, Zhang J, Wang J, Wu Z. RSC Adv. 2014, 4, 43590–43598.10.1039/C4RA07274JSearch in Google Scholar

[19] Deraguin BV, Landau L. Acta Physicochim: USSR 1941, 14, 633–662.Search in Google Scholar

[20] Verwey EJ. J. Phys. Chem. 1947, 51, 631–636.10.1021/j150453a001Search in Google Scholar PubMed

[21] Lin T, Lu ZJ, Chen W. J Membr Sci. 2014, 461, 49–58.10.1016/j.memsci.2014.03.022Search in Google Scholar

[22] Zhang M, Liao B, Zhou X, He Y, Hong H, Lin H, Chen J. Bioresour. Technol. 2015, 175, 59–67.10.1016/j.biortech.2014.10.058Search in Google Scholar

[23] van Oss CJ. Colloids Surf. B 1995, 5, 91–110.10.1016/0927-7765(95)01217-7Search in Google Scholar

[24] Safarpour M, Khataee A, Vatanpour V. Ind. Eng. Chem. Res. 2014, 53, 13370–13382.10.1021/ie502407gSearch in Google Scholar

[25] Bae TH, Tak TM. J. Membr. Sci. 2005, 249, 1–8.10.1016/j.memsci.2004.09.008Search in Google Scholar

[26] Damodar RA, Youa S, Chou H. J. Hazard. Mater. 2009, 172, 1321–1328.10.1016/j.jhazmat.2009.07.139Search in Google Scholar PubMed

[27] Ong YK, Widjojo N, Chung T. J. Membr. Sci. 2011, 378, 149–162.10.1016/j.memsci.2011.04.037Search in Google Scholar

[28] Ma W, Zhang J, Chen S, Wang X. J. Macromol. Sci. B: Phys. 2008, 47, 434–449.10.1080/00222340801954811Search in Google Scholar

[29] Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Chem. Rev. 1995, 95, 69–96.10.1021/cr00033a004Search in Google Scholar

[30] Cao X, Ma J, Shi X, Ren Z. Appl. Surf. Sci. 2006, 253, 2003–2010.10.1016/j.apsusc.2006.03.090Search in Google Scholar

[31] Kim BS, Lee J. Chem. Eng. J. 2016, 301, 158–165.10.1016/j.cej.2016.05.003Search in Google Scholar

[32] Meng N, Priestley RCE, Zhang Y, Wang H, Zhang X. J. Membr. Sci. 2016, 501, 169–178.10.1016/j.memsci.2015.12.004Search in Google Scholar

[33] Zhao C, Xu X, Chen J, Yang F. J. Env. Chem. Eng. 2013, 1, 349–354.10.1016/j.jece.2013.05.014Search in Google Scholar

[34] Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H. J. Membr. Sci. 2014, 453, 292–301.10.1016/j.memsci.2013.10.070Search in Google Scholar

[35] Li J, Zhang D, Ni X, Zheng H, Zhang Q. Chin. J. Polym. Sci. 2017, 35, 809–822.10.1007/s10118-017-1944-3Search in Google Scholar

[36] Caballero L, Whitehead KA, Allen NS, Verran J. J. Photochem. Photobiol. A 2009, 202, 92–98.10.1016/j.jphotochem.2008.11.005Search in Google Scholar

[37] Wang X, Zhao M, Meng X, Wang L, Huang D. Front. Environ. Sci. Eng. 2016, 10, 12–23.10.1007/s11783-016-0855-9Search in Google Scholar

[38] He Y, Chen X, Dai F, Xu R, Yang N, Feng X, Zhao Y, Chen L. React. Funct. Polym. 2018, 123, 80–90.10.1016/j.reactfunctpolym.2017.12.014Search in Google Scholar

[39] Rincon AG, Pulgarin C. Appl. Catal. B 2003, 44, 263–284.10.1016/S0926-3373(03)00076-6Search in Google Scholar

[40] Zhang X, Wang Z, Chen M, Liu M, Wu Z. J. Membr. Sci. 2016, 520, 66–75.10.1016/j.memsci.2016.07.048Search in Google Scholar

[41] Hou S, Dong X, Zhu J, Zheng J, Bi W, Li S, Zhang S. J. Colloid Interf. Sci. 2017, 496, 391–400.10.1016/j.jcis.2017.01.054Search in Google Scholar PubMed

[42] Chen S, Li L, Zhao C, Zheng J. Polymer 2010, 51, 5283–5293.10.1016/j.polymer.2010.08.022Search in Google Scholar

Received: 2019-01-24
Accepted: 2019-03-27
Published Online: 2019-04-23
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0007/html
Scroll to top button