Startseite On negacyclic codes over the ring ℤp + uℤp + . . . + uk + 1 ℤp
Artikel Open Access

On negacyclic codes over the ring ℤp + up + . . . + uk + 1p

  • Abhay Kumar Singh EMAIL logo , Sukhamoy Pattanayak , Amrit Kumar Mahato und Manoj Kumar Patel
Veröffentlicht/Copyright: 8. Juli 2016

Abstract

We investigate the structure of negacyclic codes over the chain ring ℤp [u]/〈 uk 〉, which plays an important role in data transmission technologies. We study the set of generators for these codes. We also discuss the rank and hamming distance for these codes. We give some examples of negacyclic codes which are near to optimal.

1 Introduction

In the middle last of the century, Shannon, Golay and Hamming discussed codes over finite field. Recently, codes over chain ring have been considered as the finite ring can be related to codes over finite fields via the Gray map. Coding theory, at its origin, is concerned with effective communication of information. Specifically, to detect and correct transmission errors techniques were developed. Coding theory was primarily studied for its application to telephone communication, elementary computing machines and computer to computer communication.

Negacyclic code played a very important role in the area of error correcting codes due to their rich algebraic structure. Negacyclic code has a lot of applications in consumer electronics, data transmission technologies, broadcast systems and computer applications as it has efficient encoding and decoding algorithms. In 1968, Berklamp investigated negacyclic codes over odd prime fields GF(p) and designed a decoding algorithm that corrects up to t ≤ ⎣ (p − 1)/2⎦ in [1]. In [2], Wolfmann discussed some interesting results about negacyclic codes of odd length over ℤ4, and proposed questions about such codes when the length is even. In [3], Blackford classified all negacyclic codes of even length using a transform approach. This has motivated authors to study the negacyclic codes over the ring ℤp [u]/〈 uk 〉. In particular, cyclic and negacyclic codes over finite rings have received much attention in series of paper [45].

Dinh and Lopez-Permouth in [16] have considered the ring ℤ2m(m ≥ 2) and studied the negacyclic codes of length 2t(t ≥ 1) over that. They have provided complete list of negacyclic codes of length 2t Over ℤ2m. Dinh in [17], determined the structure of negacyclic codes of length 2s over the Galois ring GR(2a, m), as well as that of their duals, and studied the Hamming distance of negacyclic codes of length 2s over the Galois ring GR(2a, m).

Let Rk, p = ℤp + uℤp + … + uk-1p, where p is a prime number and uk = 0. Note that the ring Rk, p can also be viewed as the quotient ring ℤp[u]/〈uk〉. Let C be a negacyclic code over the ring Rk, p = ℤp + up + … + uk – 1p, uk = 0. The line of arguments we have used to find a set of generators and a minimal spanning set of a code C are somewhat similar to those discussed in [4]. The idea to find a set of generators is as follows. We view the negacyclic code C as an ideal in Rk, p,ps = Rk, p/〈 xps + 1 〉. Then we define the isomorphism map from μ : Rk, p[x]/ 〈 xps − 1〉 → Rk, p[x]/ 〈 xps + 1〉 and discuss that I is a cyclic code of length ps over Rk, p if and only if μ(I) is a negacyclic code of length ps over Rk, p.

This paper is organized as follows. In second section, we present some basic background. In Section 3, we determine a set of generators for the negacyclic codes C over the ring Rk, p = ℤp + up + … + uk ℒ 1p, uk = 0. We discuss a minimal spanning set for these codes and find the rank in section 4. In Section 5, we study the minimum distance of these codes. We discuss some examples of different lengths of these codes in Section 6. Section 7 concludes the paper.

2 Preliminaries

Let R be a ring. A linear code of length n over R is a R submodule of Rn. A linear code C of length n over R is λ-constacyclic if for some unit λR, the code is invariant under the automorphism ν. That is ν(cn − 1, c1, …, c0) = (λc0, c1, …, cn − 1) . We can consider a negacyclic codes C(λ = − 1) of length n over R as an ideal in R[x]/〈xn + 1 〉 via the following correspondence

RnR[x]/xn+1,(c0,c1,,cn1)                    c0+c1x++cn1xn1.

A ring R is called local ring if R has a unique maximal right (left) ideal. A ring is called a chain ring if the set of all right (left) ideals of R is a chain under set-theoretic inclusion. If R is both a right and a left chain ring, we simply call R a chain ring.

For the class of finite commutative rings, We have the following equivalent conditions.

Proposition 2.1

The following conditions are equivalent for a finite commutative ring R.

  1. R is a local ring and the maximal ideal M of R is principal;

  2. R is a local principal ideal ring;

  3. R is a chain ring.

Let R be a finite commutative local ring with maximal ideal M. We define the residue field R = R/M. Let μ : R[x] → R[x] denote the natural ring homomorphism that maps rr + M and the variable x to x. We define the degree of the polynomial f(x) ∈ R[x] as the degree of the polynomial μ(f(x)) in R[x], i.e., deg(f(x)) = deg(μ(f(x)). A polynomial f(x) ∈ R[x] is called regular if it is not a zero divisor.

Proposition 2.2

Let R be a finite commutative local ring. Let f(x) = a0 + a1x + … + anxn be in R[x], then the followings are equivalent.

  1. μ(f(x)) ≠ 0;

  2. ai is a unit for some i, 0 ≤ in;

  3. a0, a1, …, an〉 = R.

Proof: (i) ⇒ (ii) Let μ(f(x)) ≠ 0 ⇒ ∃ an ai for some i, 0 ≤ in such that aiM. ⇒ ai is a unit element (Since all element out side of the M are unit).

(ii) ⇒ (iii) Let ai is a unit for some i, 0 ≤ i ≤ n ⇒ 〈ai〉 = R ⇒ 〈a0, a1, …, an〉 = R.

(iii) ⇒ (i) Let 〈a0, a1, …, an〉 = R. We claim that at least one of ai is a unit for some i, 0 ≤ in. If not then all ai ⇒ 〈 a0, a1, …, an〉 ⊆ MR. A contradiction. So ∃ an aiM for some i, 0 ≤ inμ(f(x)) ≠ 0.

The following version of the division algorithm holds true for polynomials over finite commutative local rings.

Proposition 2.3

Let R be a finite commutative local ring. Let f(x) and g(x) be non zero polynomials in R[x]. If g(x) is regular, then there exist polynomials q(x) and r(x) in R[x] such that f(x) = g(x)q(x) + r(x) anddeg(r(x))〈 deg(g(x)).

Let Rk, p = ℤp + up + … + uk − 1p, uk = 0. It is easy to see that the ring Rk, p is a finite chain ring with unique maximal ideal 〈u〉. Let g(x) be a non zero polynomial in ℤp[x]. It is also easy to see that the polynomial g(x) + up1(x) + u2p2(x) + … + uk − 1pk − 1(x) ∈ Rk, p[x] is regular. Throughout the paper, we repeatedly make use for the polynomial g(x) + up1(x) + u2p2(x) + … + uk −1pk − 1(x) ∈ Rk, p[x]. Note that deg(g(x) + up1(x) + u2p2(x) + … + uk − 1pk − 1(x)) = deg(g(x)).

3 A generator for negacyclic codes of length ps over the ring Rk, p

Let p be a odd prime number. Let Rk, p = ℤp + up + ⋯ + uk − 1p, uk = 0.

Proposition 3.1

Let μ be the map μ : Rk, p[x]/〈 xps − 1 〉 → Rk, p[x]/〈xps + 1〉 defined by μ (f(x)) = f(−x) . Then μ is a ring isomorphism.

Proof: For the polynomials f(x), g(x) ∈ Rk, p[x],

f(x)g(x)  mod(xn1);

if and only if there exists a polynomial h(x) ∈ Rk, p[x], such that

f(x)g(x)=h(x)(xps1);

if and only if ps is odd and

f(x)g(x)=h(x)((x)ps1);  if  and  only  iff(x)g(x)=h(x)((1)psxps1)=h(x)(xps+1));

if and only if

f(x)g(x)  mod    (xps+1);

This implies that f(x), g(x) ∈ Rk, p[x]/〈xps − 1 〉, μ (f(x)) ≡ μ (g(x)) mod (xps + 1) if and only if f(x) = g(x). Hence, μ is well-defined and one-to-one. Since the ring Rk, p[x]/〈xps − 1〉 and Rk, p[x]/〈 xps + 1 〉 are finite and of same order, μ is an onto map. It is easy to see that μ is a ring homomorphism. So μ is a ring isomorphism.

Remark 3.1

We restrict the isomorphism μ to an isomorphism μ : ℤp[x]/〈 xps − 1〉 → ℤp[x]/〈 xps + 1〉

Throughout this paper we use the isomorphism μ and restriction of μ defined in Proposition [3.1] and Remark [3.1].

Corollary 3.2

If I is a subset of Rk, p[x]/〈 xps − 1〉 and μ (I) is a subset of Rk, p[x]/〈 xps + 1〉, then I is an ideal ofRk, p[x]/〈 xps − 1〉 if and only if μ (I) is an ideal ofRk, p[x]/〈 xps + 1〉. Equivalently I is a cyclic code of length psover Rk, pif and only if μ (I) is a negacyclic code of length psover Rk, p.

Proof: The proof is obvious since the map μ is a ring isomorphism.

Let p be a odd prime number. Let Rk, p = ℤp + up + ⋯ + uk − 1p, uk = 0. and Rk, p, ps = Rk, p[x]/〈 xps + 1〉. Let Ck be a negacyclic code of length ps over Rk, p. From Corollary [3.1], we know that for the negacyclic code Ck there exist a cyclic code, say A over the same ring and of same length. We know the structure of a cyclic code over the ring Rk, p from [4]. Since ps is not relatively prime to p, then we know that cyclic code of length ps over Rk, p is A = 〈g(x) + up1(x) + u2p2(x) + ⋯ + uk−1pk−1(x), ua1(x) + u2q1(x) + ⋯ + uk−1qk−2(x), u2a2(x) + u3l1(x) + ⋯ + uk − 1lk−3(x), ⋯, uk − 2ak− 2(x) + uk−1t1(x), uk−1ak−1(x)〉 with ak−1(x)|ak−2(x)| ⋯ | a2(x)|a1(x)|g(x)|(xps−1) mod p, ak2(x)|p1(x)(xps1g(x)),,ak1|t1(x)(xps1ak2(x)),ak1|pk1×(xps1g(x))(xps1ak2(x)) Moreover, deg pk−1(x) 〈degak−1(x), ⋯, deg t1(x) 〈ak−1(x), ⋯, and deg p1(x)〈 degak−2(x). Now the polynomials g(x) + up1(x) + u2p2(x) + ⋯ + uk−1pk − 1(x), ua1(x) + u2q1(x) + ⋯ + uk−1qk−2(x),⋯,uk−2ak−2(x) + uk−1t1(x), uk−1ak−1(x) ∈ Rk, p[x]/〈 xps − 1〉 Therefore from the definition of μ from Proposition [3.1], we get μ(g(x) + up1(x) + u2p2(x) + ⋯ + uk−1pk−1(x)) = g(-x) + up1(-x) + u2p2(-x) + ⋯ + uk−1pk−1(-x) = g1(x) + up11(x) + u2p12(x) + ⋯ + uk−1p1(k−1)(x), μ(ua1(x) + u2q1(x) + ⋯ + uk−1qk−2(x)) = ua1(-x) + u2q1(-x) + ⋯ + uk−1qk−2(−x) = ua11(x) + u2q11(x) + ⋯ + uk−1q1(k−2)(x), ⋯, μ(uk−2ak−2(x) + uk−1t1(x)) = uk−2ak−2(−x) + uk−1t1(−x) = uk−2a1(k−2)(x) + uk−1t11(x), μ(uk−1ak−1(x)) = uk−1ak−1(−x) = uk−1a1(k−1)(x) and μ(xps-1) = −(xps + 1), where g(−x) = g1(x), p1(−x) = p11(x), p2(−x) = p12(x),⋯, ak−2(−x) = a1(k−2)(x), t1(−x) = t11(x), ak−1(−x) = a1(k−1)(x). Again μ(A) = Ck. Therefore the code C can be written as Ck =〈 g1(x) + up11(x) + u2p12(x) + ⋯ + uk−1p1(k-1)(x), u a11(x) + u2q11(x) + ⋯ + uk−1q1(k−2)(x), u2a12(x) + u3l11(x) + ⋯ + uk−1l1(k−3)(x), …, uk−2a1(k−2)(x) + uk−1t11(x), uk−1a1(k−1)(x)〉 with a1(k−1)(x)|a1(k−2)(x)| ⋯ | a12(x)|a11(x)|g1(x)|(xps+1) mod p, a1(k2)(x)|p11(x)(xps+1g(x)),,a1(k1)|t11(x)(xps+1a1(k2)(x)),,a1(k1)|p1(k1)×(xps+1g1(x))(xps+1a1(k2)(x)).

Lemma 3.3

Let C2be a negacyclic code over R2 = ℤp + up, u2 = 0. If C2 = 〈 g1(x) + up11(x), ua11(x)〉, and g(x) = a11(x) with deg g(x) = r, then

C2=g1(x)+up11(x)  and  (g1(x)+up11(x))|(xps+1)  in  R2.

Proof: We have u (g1(x) + u p11(x)) = ug1(x) and g(x) = a11(x). It is clear that C2 ⊂ 〈g1(x) + up11(x)〉. Hence, C2 = 〈 g1(x) + up11(x)〉. By the division algorithm, we have xps − 1 = (g1(x) + up11(x)) q(x) + r(x), where r(x) = 0 or deg r(x) 〈 r. This implies that r(x) = (x{ps − 1) − (g1(x) + up11(x)) q(x). This gives, r(x) ∈ C2. Thus, we have r(x) = 0 and hence (g1(x) + up11(x))|(xps − 1) in R2.

Lemma 3.4

Let C3be a negacyclic code over R3 = ℤp + up + u2p, u3 = 0. If C3 = 〈 g1 + up11(x) + u2p12(x), ua11(x) + u2q11(x), u2a12(x)〉, and a12(x) = g1(x), then C3 = 〈 g1(x) + up11(x) + u2p12(x) 〉, (g1(x) + up11(x) | (xps +1) in R2and (g1 + up11(x) + u2p12(x)) | (xps +1) inR3.

Theorem 3.5

Let Ckbe a negacyclic code over Rk, p = ℤp + up + u2p + ⋯ + + uk−1p, uk = 0. Since psis not relatively prime to p, then,

  1. Ck = 〈 g1(x) + up11(x) + u2p12(x) + ⋯ + uk−1p1(k−1)(x)〉 where g1(x) andp1i(x) are polynomials inp[x] with g1(x)|(xps +1) mod p, (g1(x) + up11(x) + u2p12(x) + ⋯ + uk−1p1(k−1)(x))|(xps +1) in Riand deg p1i ≤ degp1(i−1)for all 1 ≤ ik.

  2. Ck = 〈g1(x) + up11(x) + u2p12(x) + ⋯ + uk−1p1(k−1)(x), ua11(x) + u2q11(x) + ⋯ + uk−1q1(k−2)(x), u2a12(x) + u3l11(x) + ⋯ + uk−1l1(k−3)(x), …, uk−2a1(k−2)(x) + uk−1t11(x), uk−1a1(k−1)(x)〉 with a1(k−1)(x)|a1(k−2)(x)| ⋯ | a12(x)|a11(x)|g1(x)|(xps+1) mod p, a1(k2)(x)|p11(x)(xps1g(x)),,a1(k1)|t11(x)(xps1a1(k2)(x)),,a1(k1)|p1(k1)×(xps1g1(x))(xps1a1(k2)(x)). Moreover, deg p1(k−1)(x) < dega1(k−1)(x), …, deg t11(x) < a1(k−1)(x), …, and deg p11(x) < dega1(k−2)(x).

4 Ranks and minimal spanning sets

If negacyclic code C over the finite chain ring R are free R-submodules, then the basis of C over R is called the minimal generating set of C, and the number of element include in the minimal generating set is called the rank of the code C, denoted the rank(C).

Theorem 4.1

Let C = 〈g0,ag1, ⋯, at-1gt − 1〉 be any negacyclic code over the finite chain ring R, where gt−1 |gt−2 | ⋯ |g1 |g0 |(xps + 1), deg(gi) = ri, i = 0, 1, ⋯ t−1, rt − 1 < rt − 2 < ⋯ < r0, thenCis a freeR-submodule withrank(C) = psrt − 1and its minimal generating set isβ= {g0,xg0, ⋯, xnr0 − 1g0; ag1,xag1, ⋯, xr0r−1ag1; ⋯ ; at−2gt−2,xat − 2gt − 2, ⋯, xrt−3-rt−2−1at−2gt−2;at−1gt−1, xat − 1gt − 1, ⋯, xrt−2rt − 1− 1at − 1gt − 1}.

Theorem 4.2

Let psis not relatively prime to p. Let C2be a negacyclic code of length psover R2 = ℤp + up, u2 = 0.

  1. If C2 = 〈g1(x) + up11(x)〉 with deg g1(x) = r and (g1(x)+up11(x)|(xps −1), then C2 is a free module with rank nr and a basis B1 = {g1(x)+up11(x), x(g1(x) + up11(x)), · · ·, xnr−1(g1(x) + up11(x))}, and |C2| = p2ps−2r.

  2. If C2 = 〈g1(x) + up11(x), ua11(x)〉 with deg g1(x) = r and deg a11(x) = t, then C2has rank nt and a minimal spanning set B2 = {g1(x) + up11(x), x(g1(x) + up11(x)), · · ·, xnr−1(g1(x) + up11(x)), ua11(x), xua11(x), . . ., xrt−1ua11(x)}, and |C2| = p2psrt.

Proof: (1) Suppose xps+1 = (g1(x) + u p11(x))(h1(x) + u h11(x)) over R2. Let c(x) ∈ C2 = 〈 g1(x) + u p11(x)〉, then c(x) = (g1(x) + up11(x))f(x) for some polynomial f(x). If deg f(x) ≤ psr−1, then c(x) can be written as linear combinations of elements of B1. Otherwise by the division algorithm there exist polynomials q(x) and r(x) such that f(x)=(xps+1g1(x)+up11(x))q(x)+r(x) where r(x) = 0 or deg r(x) ≤ psr−1. This gives,

(g1(x)+up11(x))f(x)=(g1(x)+up11(x))×((xps+1g1(x)+up11(x))q(x)+r(x))=(g1(x)+up11(x))r(x).

Since deg r(x) ≤ psr−1, this shows that B1 spans C2. Now we only need to show that B1 is linearly independent. Let g1(x) = g10 + g11x + ⋯ + g1rxr and p11(x) = p110 + p111x + ⋯ + p11lxl, g0p×, g1i, p11(i−1) ∈ ℤp, i ≥ 1. Suppose (g1(x) + u p11(x))c0 + x(g1(x) + u p11(x))c1 + ⋯ + xpsr−1(g1(x) + u p11(x))c{psr−1 = 0. By comparing the coefficients in the above equation, we get

(g10+up110)c0=0.  (constant  coefficient)

Since (g10 + up110) is unit, we get c0 = 0. Thus,

x(g1(x)+up11(x))c1+n                        +xpsr1(g1(x)+up11(x))cpsr1=0.

Again comparing the coefficients, we get

(g10+up110)c1=0.  (coefficient  of  x).

As above, this gives c1 = 0. Continuing in this way we get that ci = 0 for all i = 0, 1. …, nr−1. Therefore, the set B1 is linearly independent and hence a basis for C2.

(2) If C2 = 〈g1(x) + up11(x), ua11(x) 〉 with deg g1(x) = r and deg a11(x) = t. The lowest degree polynomial in C2 is ua11(x). It is suffices to show that B2 spans B = {g1(x) + up11(x), x(g1(x) + up11(x)), · · ·, xpsr−1(g1(x) + up11(x)), ua11(x), xua11(x), · · ·, xpst−1ua11(x)}. We first show that uxrta11(x) ∈ span(B2). Let the leading coefficients of xrta11(x) be a0 and of g1(x) + up11(x) be g10. There exists a constant c0 ∈ ℤp such that a10 = c0g10. Then we have

uxrta11(x)=uc0(g1(x)+up11(x))+um(x),

where um(x) is a polynomial in C2 of degree less than r. Since C2 = < g1(x) + up11(x), ua11(x)>, any polynomial in C2 must have degree greater or equal to deg a11(x) = t. Hence, t ≤ deg m(x) < r and

um(x)=α0ua11+α1xua11++αrt1xrt1ua11.

Thus, uxrta11 ∈ span(B2). Inductively, we can show that uxrt+1a(x), ⋯ uxpst−1a(x) ∈ span(B2). Hence, B2 is a generating set. As in (1), by comparing the coefficients we can see that B2 is linearly independent. Therefore, B2 is a minimal spanning set and |C2| = p2psrt. Following the same process as in the above theorem, we can find the rank and the minimal spanning set of any cyclic code over the ring Rk, p, k ≥ 1.

Theorem 4.3

Let psis not relatively prime to p. Let Ckbe a negacyclic code of length psover Rk, p = ℤp + up + ⋯ + uk−1p, uk = 0. We assume the constraints on the generator polynomials of Ckas in Theorem 3.5.

  1. If Ck = 〈g1(x)+up11(x)+u2p12(x)+· · ·+uk−1p1(k−1)(x) 〉 with deg g1(x) = r, then Ck is a free module with rank psr and a basis B1 = {g1(x) + up11(x) + u2p12(x) + · · · + uk−1p1(k−1)(x), x(g1(x) + up11(x) + u2p12(x) + · · · + uk−1p1(k−1)(x)), · · ·, xnr−1(g1(x) + up11(x) + u2p12(x) + · · · + uk−1p1(k−1)(x))}.

  2. If Ck = 〈g1(x) + up11(x) + u2p12(x) + · · · + uk−1p1(k−1)(x), ua11(x) + u2q11(x) + · · · + uk−1q1(k−2)(x), u2a12(x) + u3l11(x) + · · · + uk−1l1(k−3)(x), · · ·, uk−2a1(k−2)(x) + uk−1t11(x), uk−1a1(k−1)(x) 〉 with deg g1(x) = r1, deg a11(x) = r2, deg a12(x) = r3, . . ., deg a1(k−1)(x) = rk, then Ck has rank psrk and a minimal spanning set B2 = {g1(x) + up11(x) + u2p12(x) + · · · + uk−1p1(k−1)(x), x(g1(x) + up11(x) + u2p12(x) + · · · + uk−1p1(k−1)(x)), · · ·, xpsr1−1(g1(x) + up11(x) + u2p12(x) + · · · + uk−1p1(k−1)(x)), ua11(x) + u2q11(x) + · · · + uk−1q1(k−2)(x), x(ua11(x) + u2q11(x) + · · · + uk−1q1(k−2)(x)), · · ·, xr1r2−1(ua11(x) + u2q11(x) + · · · + uk−1q1(k−2)(x)), u2a12(x) + u3l11(x) + · · · + uk−1l1(k−3)(x), x(u2a12(x) + u3l11(x) + · · · + uk−1l1(k−3)(x)), · · ·, xr2r3−1(u2a12(x)+u3l11(x)+· · ·+ uk−1l1(k−3)(x)), · · ·, uk−1a1(k−1)(x), xuk−1a1(k−1)(x), · · ·, xrk−1−rk−1uk−1a1(k−1)(x)}.

5 Minimum Distance

Since ps is not relatively prime to p. Let C2 = 〈 g1(x) + up11(x), ua11(x)〉 be a negacyclic code of length ps over R2 = ℤp + up, u2 = 0. We define C2,u = k(x) ∈ R2,n : u k(x) ∈ C2. It is easy to see that C2,u is a negacyclic code over ℤp. Let Ck be a negacyclic code of length ps over Rk, p = ℤp + up + ⋯ + uk−1p, uk = 0. We define Ck, uk−1 = k(x) ∈ Rk, n : uk−1k(x) ∈ Ck. Again it is easy to see that Ck, uk−1 is a negacyclic code over ℤp.

Theorem 5.1

Let psis not relatively prime to p. If Ck = 〈g1(x) + up11(x) + u2p12(x) + ⋯ + uk−1p1(k−1)(x), ua11(x) + u2q11(x) + ⋯ + uk−1q1(k−2)(x), u2a12(x) + u3l11(x) + ⋯ + uk−1l1(k−3)(x), ⋯, uk−2a1(k−2)(x) + uk−1t11(x), uk−1a1(k−1)(x)〉 is a negacyclic code of length psover Rk, p = ℤp + up + ⋯ + uk−1p, uk = 0. Then Ck, uk−1 = < ak− 1(x) > and wH(Ck) = wH(Ck, uk−1).

Proof: We have uk−1a1(k−1)(x) ∈ Ck, thus 〈a1(k−1)(x)〉 ⊆ Ck, uk−1. If b(x) ∈ Ck, uk−1, then uk−1b(x) ∈ Ck and hence there exist polynomials b1(x), ⋯, bk(x) ∈ ℤp[X] such that uk−1b(x) = b1(x)uk−1g1(x) + b2(x)uk−1a11(x) + b2(x)uk−1a12(x)+ ⋯ + bk(x)uk−1a1(k−1)(x). Since a1(k−1)(x)|a1(k−2)(x)|⋯ |a12(x)| a11(x)|g1(x), we have uk−1b(x) = m(x)uk−1a1(k−1)(x) for some polynomial m(x) ∈ ℤp[x]. So, Ck, uk−1 ∈ 〈 a1(k−1)(x)〉, and hence Ck, uk−1 = 〈 a1(k−1)(x)〉. Let m(x) = m0(x) + um1(x) + ⋯ + uk−1mk−1(x) ∈ Ck, where m0(x), m1(x), ⋯, mk−1(x) ∈ ℤp[x]. We have uk−1m(x) = uk−1m0(x), wH(uk−1m(x)) ≤ wH(m(x)) and uk−1Ck is subcode of Ck with wH(uk−1Ck) ≤ wH(Ck). Therefore, it is sufficient to focus on the subcode uk−1Ck in order to prove the theorem. Since uk−1Ck = 〈 uk−1a1(k−1)(x)〉, we get wH(Ck) = wH(Ck, uk−1).

Definition 5.2

Let m = bs−1ps−1 + bs−2ps−2 + ⋯ + b1p + b0, bi ∈ ℤp, 0 ≤ is − 1, be the p-adic expansion of m.

  1. If bsi ≠ 0 for all 1 ≤ iq, q < s, and bsi = 0 for all i, q+1 ≤ is, thenmis said to have a p-adic length q zero expansion.

  2. If bsi ≠ 0 for all 1 ≤ iq, q < s, bsq−1 = 0 andbsi ≠ 0 for some i, q + 2 ≤ is, then m is said to have p-adic length q non-zero expansion.

  3. If bs−i ≠ 0 for 1 ≤ is, then m is said to have a p-adic length sexpansion or p-adic full expansion.

Lemma 5.3

Let C be a negacyclic code over Rk, pof length pswhere s is a positive integer. Let C = 〈 a(x)〉 where a(x) = (xps−1 − 1)bh(x), 1 ≤ b < p. If h(x) generates a negacyclic code of length ps−1 and minimum distance d then the minimum distance d(C) of C is (b + 1)d.

Proof: For cC, we have c = (xps−1 - 1)bh(x)m(x) for some m(x)Rk,p[x](xps1). Since h(x) generates a negacyclic code of length ps−1, we have w(c) = w((xps−1 − 1)bh(x)m(x)) = w(xps−1bh(x)m(x)) + w(bC1xps−1(b−1)h(x)m(x)) + ⋯ + w(bCb−1xps−1h(x)m(x)) + w(h(x)m(x)). Thus, d(C) = (b + 1)d.

Theorem 5.4

Let Ckbe a negacyclic code over Rk, pof length pswhere s is a positive integer. Then, Ck = 〈g1(x) + up11(x) + u2p12(x) + ⋯ + uk−1p1(k−1)(x), ua11(x) + u2q11(x) + ⋯ + uk−1q1(k−2)(x), u2a12(x) + u3l11(x) + ⋯ + uk−1l1(k−3)(x), ⋯, uk−2a1(k−2)(x) + uk−1t11(x), uk−1a1(k−1)(x)〉 where g1(x) = (x+1)t1, a11(x) = (x+1)t2, ⋯, a1(k−1)(x) = (x+1)tk. for somet1 > t2 > ⋯ > tk > 0.

  1. If tkps−1, then d(C) = 2.

  2. If tk > ps−1, let tk = bs−1ps−1 + bs−2ps−2 + ⋯ + b1p + b0be the p-adic expansion of tkand abk−1(−x) = (x+1)tk = (xps−1 − 1)bs−1(xps−2 − 1)bs−2 ⋯ (xp1 - 1)b1(xp0 − 1)b0.

    1. If tkhas a p-adic length qzero expansion or full expansion (s = q). Then, d(Ck) = (bs−1 + 1)(bs−2+1)⋯(bsq+1).

    2. If tkhas a p-adic length q non-zero expansion. Then, d(Ck) = 2(bs−1+1)(bs−2+1)⋯(bsq+1)

6 Examples

In this section, we give some examples of negacyclic codes of different lengths over the ring Rk, p.

Example 6.1

Negacyclic codes of length 5 over R3,5 = ℤ5 + u5 + u25, u3 = 0: We haveC = 〈g1(x) + up11(x) + u2p12(x), ua11(x) + u2q11(x), u2a12(x)〉 wherea12(x)|a11(x)|g1(x)|(xps+1) mod p anda11(x)(xps+1g1(x)),, a12(x)(xps+1a11(x)) and a2(x)(xps+1a11(x))(xps+1g1(x)), degp12(x) < deg a12(x), deg q11(x) < deg a12(x) and deg p11(x) < deg a11(x)

x5+1=(x+1)5  over  R3,5.

Let g1(x) = (x + 1) = g. The non-zero negacyclic codes of length 5 over R3,5with generator polynomial are given in Tables 1, 2 and 3.

Table 1

Non free module negacyclic codes of length 5 over ℤ5 + u5 + u25, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
< u, u2 >, < gi, u, u2 >, 1 ≤ i ≤ 4.1
< g2 + uc0+ u2c1, ug + u2c2, u2g >, c0, c1, c2524
< g2 + uc0, ug, u2 >, c0 ∈ ℤ515
< g3 + u(c0 + c1) + u2(c2 + c3), ug2
+u2(c4 + c5),u2g2 >, ci ∈ ℤ5, cii≤533
< g3 + u(c0 + c1) + u2c2, ug2+ u2c3), u2g >, ci G ℤ5, 0 < i < 324
<g3 +u(c0 + c1),ug2,u2 >,c0,c1 ∈ ℤ5.15
< g3 + uc0+ u2c1, ug+ u2c2, u2g >, c0, c1, c2 ∈ ℤ5.24
<g3 +uc0,ug, u2 >,co, ∈ ℤ5.15
< g4 + uc0g2 + u2(c1 + c2x + c3x2), ug3 + u2(c4 + c5x)g, u2g3 > ci ℤ5, 0 ≤ i ≤ 5.42
< g4 + uc0g2 + u2(c1 + c2x), ug3 + u2(c3 + c4x), u2g2 >, ci5, 0 ≤ i ≤ 4.33
< g4 + uc0g2 + u2c1, ug3 + u2c2, u2g >, c0, c1, c2 ∈ ℤ5.24
<g4 + uc0g2,ug3,u2 >,c0G5.15
< g4 + uc0g+ u2(c1 + c2x), ug2 + u2(c3 + c4x), u2g2 >, ci ∈ ℤ5,0 ≤ i ≤ 4.33
<g4 + uc0g+ u2c1, ug2 + u2c2,u2g >, c0,c1,c2 ∈ ℤ5.24
< g4 + uc0g, ug2, u2 >, c0 ∈ ℤ5.15
<g4 + uc0g+ u2c1, ug + u2c2, u2g >,c0,c1,c2 ∈ ℤ5.24
< g4 + uc0g, ug, u2 >, c0 ∈ ℤ5.15
<ug4 + u2Cog3,u2g4 >, co ∈ ℤ5.51
< ug4 + u2c0g2, u2g3 >, c0 ∈ ℤ5.42
< ug4 + u2c0g, u2g2 >, c0 ∈ ℤ5.33
Table 2

Non free module negacyclic codes of length 5 over ℤ5 + u5 + u25, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
< ug4+ u2c0, u2g >, c0 ∈ ℤ524
< ug4, u2 >.15
< ug3+ u2(c0+ c1x)g, u2g3 >,c0, c1 ∈ ℤ5.42
< ug3+ u2(c+ c1x), u2g2 >, c0,c1 ∈ ℤ5.33
< ug3+ u2c0, u2g >, c0 ∈ ℤ524
< ug3, u2>.15
< ug2+ u2(c0+ c1x), u2g2 >, c0,c1 ∈ ℤ5.33
< ug2+ u2c0, u2g >, c0 ∈ ℤ5.24
< ug2, u2>.15
< ugi + u2c0, u2g >, c05.24
< ug, u2>.15

Table 3

Non-zero free module negacyclic codes of length 5 over ℤ5 + u5 + u25, u3 = 0

Non-zero generator polynomialsd(c)Ranks
< 1 >15
< g + uc0 >, c05.24
< g2 + u(c0+ c1x) + u2c2 >,c0,c1,c2 ∈ ℤ5.33
< g3+u(c0+c1x-(c0-ci)x2)+u2(c2+c3x) >,c0,c1,c2,c3 ∈ ℤ5.42
< g4 + uc0(1 – 2x + 3x2 – 4x3) + u2c1(1 + 2x + x2) >,c0,c1 ∈ ℤ5.51

Example 6.2

Negacyclic codes of length 9 over R3,3 = ℤ3 + u3 + u23, u3 = 0: We have x9+1 = (x+1)9overR3,3. Let g1(x) =(x + 1) = g. The non-zero negacyclic codes of length 9 over R3,3with generator polynomial are given in Tables 4, 5 and Tables 6-11.

Table 4

Non-zero free module negacyclic codes of length 9 over ℤ3 + u3 + u23, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
< 1 >.19
<g + uc0 >, c03.28
<g2 + u(c0 + c1x) + u2c2 >,c0,c1,c2 ∈ ℤ3.37
<g3 +u(c0 + c1x+ c2x2) + u2(c3 + c4x) >,c0,c1,c2,c3,c4 ∈ ℤ3.46
< g4 + u(c0 + c1x + c2x2 + c3x3) + u2(c4 + c5x + c6x2) >, ci ∈ ℤ3, 0 ≤ i ≤ 6.55
< g5 + u(c0 + c1x + c2x2 + c3x3 – (c0c1 + c2c3)x4) + u2(c4 + c5x + c6x2 + c7x3) >, ci ∈ ℤ3, 0 ≤ i ≤ 7.64
< g6 + u(c0 + c1x + c2x2 + c0x3 + c1x4 + c2x5 + u2(c3 + c4x, +c5x2 + c6x3 + c7x4) >, ci ∈ ℤ3, 0 ≤ i ≤ 7.73
Table 5

Non-zero free module negacyclic codes of length 9 over ℤ3 + u3 + u23, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
< g7 + u(c0 + c1xc1x2 + (c1c0)x3 + c1x4c1x5 + (c0 + c1)x6) + u2(c2 + c3x + c4x2 + c5x3 + c6x4 + c7x5) >, ci ∈ℤ 3, 0 ≤ i ≤ 7.82
< g8 + uc0(1 + xx3x4 + x6 + x7) + u2c1(1 − x3 + x6) >, c0, c1, c2 ∈ℤ 3.91
Table 6

Non free module negacyclic codes of length 9 over ℤ3 + u3 + u23, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
< u, u2 >, < gi, u, u2 >, 1 < i < 9.19
<g2+ uc0+ u2c1, ug+u2c2, u2g>, c0, c1, c2328
< g2 + uc0, ug, u2 >, c0319
< g3 + u(c0 + c1) + u2(c2+ c3), ug2 + u2(c4 + c5), u2g2 >, ci ∈ ℤ3, 0 ≤ i ≤ 527
< g3 + u(c0 + c1) + u2c2, ug2 + u2c3), u2g >, ci3,0 < i < 328
<g3 +u(c0 + c1),ug2,u2 >,c0,c1 ∈ ℤ3.19
<g3+uc0+ u2c1, ug+u2c2, u2g>, c0, c1, c23.28
<g3 +uc0, ug, u2 >,c0, ∈ ℤ3.19
< g4 + u(c0 + c1x + c2x2) + u2(c3 + c4x + c5x2), ug3 + u2(c6+ c7x + c8x2), u2g3 >, ci3,0 ≤ i ≤ 8.26
< g4 + u(c0 + c1x + c2x2) + u2(c3+ c4x), ug3 + u2(c5 + c6x), u2g2 > ci ∈ ℤ3, 0 ≤ i ≤ 6.27
< g4 + u(c0 + c1x+ c2x2) + u2c3, ug3+ u2c4, u2g >, ci ∈ ℤ3, 0 ≤ i ≤ 428
<g4 + u(c0 + c1x+ c2x2),ug3,u2 >,c0,c1,c2,c3 ∈ ℤ319
< g4 + u(c0 + c1x) + u2(c2 + c3x), ug2 + u2(c4 + c5x), u2g2 > ci ∈ ℤ3,0 ≤ i ≤ 5.27
<g4 + u(c0 + c1x) + u2c2,ug2 + u2c3,u2g >,c0,c1,c2,c3 ∈ ℤ328
< g4 + u(c0 + c1x), ug2, u2 >, c0, c1, ∈ ℤ319
< g5 + u(c0 + c1x + c2x2) + u2(c3 + c4x), ug3 + u2(c5 + c6x), u2g2 >, ci ∈ ℤ3, 0 ≤ i ≤ 6.27
<g5 + u(c0 + c1x+ c2x2) + u2c3,ug3 + u2c4, u2g >,ci ∈ ℤ3,0 ≤ i ≤ 5.28
Table 7

Non free module cyclic codes of length 9 over ℤ9 + u9 + u29, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
<g5 + u(c0 + c1x + c2x2), ug3, u2>, c0, c1, c2 ∈ ℤ3 .19
<g5 + u(c0 + c1x) + u2(c2+ c3x), ug2 + u2(c4+ c5x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 6.27
<g5 + u(c0 + c1x) + u2c2, ug2 + u2c3, u2g>, ci ∈ ℤ3, 0≤ i ≤ 3.28
<g5 + u(c0 + c1x), ug2, u2>, c0, c1 ∈ ℤ3 .19
<g5 + uc0 + u2c1, ug + u2c2, u2g>, c0, c1 ∈ ℤ3 .28
<g5 + uc0, ug, u2>, c0 ∈ ℤ3 .19
<g6 + u(c0 + c1x + c2x2)g2 + u2(c3+ c4x + c5x2 + c6x3 + c7x4), ug5 + u2(c8+ c9x + c10x2 + c11x3)g, u2g5>, ci ∈ ℤ3, 0≤ i ≤ 11.64
<g6 + u(c0 + c1x + c2x2)g2 + u2(c3+ c4x + c5x2 + c6x3), ug5 + u2(c7+ c8x + c9x2 + c10x3), u2g4>, ci ∈ ℤ3, 0≤ i ≤ 10.45
<g6 + u(c0 + c1x + c2x2)g2 + u2(c3+ c4x + c5x2), ug5 + u2(c6+ c7x + c8x2), u2g3>, ci ∈ ℤ3, 0≤ i ≤ 8.26
<g6 + u(c0 + c1x + c2x2)g2 + u2(c3+ c4x), ug5 + u2(c5+ c6x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 6.27
<g6 + u(c0 + c1x + c2x2)g2 + u2c3, ug5 + u2c4, u2g>, ci ∈ ℤ3, 0≤ i ≤ 428
<g6 + u(c0 + c1x + c2x2)g2, ug5, u2>, c0,c1, c2 ∈ ℤ3 .19
<g6 + u(c0 + c1x + c2x2)g + u2(c3+ c4x + c5x2 + c6x3), ug4 + u2(c7+ c8x + c9x2 + c10x3), u2g4>, ci ∈ ℤ3, 0≤ i ≤ 10.45
<g6 + u(c0 + c1x + c2x2)g + u2(c3+ c4x + c5x2), ug4 + u2(c6+ c7x + c8x2), u2g3>, ci ∈ ℤ3, 0≤ i ≤ 8.26
<g6 + u(c0 + c1x + c2x2)g + u2(c3+ c4x), ug4 + u2(c5+ c6x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 6.27
<g6 + u(c0 + c1x + c2x2)g + u2c3, ug4 + u2c4, u2g>, ci ∈ ℤ3, 0≤ i ≤ 428
<g6 + u(c0 + c1x + c2x2)g, ug4, u2>, c0,c1, c2 ∈ ℤ3.19
<g6 + u(c0 + c1x + c2x2) + u2(c3+ c4x + c5x2), ug3 + u2(c6+ c7x + c8x2), u2g3>, ci ∈ ℤ3, 0≤ i ≤ 8.26
<g6 + u(c0 + c1x + c2x2) + u2(c3+ c4x), ug3 + u2(c5+ c6x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 6.27
<g6 + u(c0 + c1x + c2x2) + u2c3, ug3 + u2c4, u2g>, ci ∈ ℤ3, 0≤ i ≤ 428
<g6 + u(c0 + c1x + c2x2), ug3, u2>, c0,c1, c2 ∈ ℤ3.19
<g6 + u(c0 + c1x) + u2(c2+ c3x), ug2 + u2(c4+ c5x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 6.27
Table 8

Non free module negacyclic codes of length 9 over ℤ3 + u3 + u23, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
<g6 + u(c0 + c1x) + u2c2, ug2 + u2c4, u2g>, c0, c1, c2, c3 ∈ ℤ3 .28
<g6 + u(c0 + c1x), ug2, u2>, c0, c1, ∈ ℤ3 .19
<g6 + uc0 + u2c1, ug + u2c2, u2g>, c0, c1, c2, ∈ ℤ3 .28
<g6 + uc0, ug, u2>, c0 ∈ ℤ3 .19
<g7 + u(c0 + c1x)g4 + u2(c2 + c3x + c4x2 + c5x3 + c6x4)g, ug6 + u2(c7 + c8x + c9x2)g3, u2g6>, ci ∈ ℤ3, 0≤ i ≤ 9.83
<g7 + u(c0 + c1x)g4 + u2(c2 + c3x + c4x2 + c5x3 + c6x4), ug6 + u2(c7 + c8x + c9x2)g2, u2g5>, ci ∈ ℤ3, 0≤ i ≤ 9.64
<g7 + u(c0 + c1x)g4 + u2(c2 + c3x + c4x2 + c5x3), ug6 + u2(c6 + c7x + c8x2)g, u2g4>, ci ∈ ℤ3, 0≤ i ≤ 8.45
<g7 + u(c0 + c1x)g4 + u2(c2 + c3x + c4x2), ug6 + u2(c5 + c6x + c7x2), u2g3 >, ci ∈ ℤ3, 0≤ i ≤ 7.26
<g7 + u(c0 + c1x)g4 + u2(c2 + c3x), ug6 + u2(c4 + c5x), u2g2 >, ci ∈ ℤ3, 0≤ i ≤ 5.27
<g7 + u(c0 + c1x)g4 + u2c2, ug6 + u2c3, u2g >, c0, c1, c2, c3 ∈ ℤ3.28
<g7 + u(c0 + c1x)g4, ug6, u2 >, c0, c1 ∈ ℤ3 .19
<g7 + u(c0 + c1x)g3 + u2(c2 + c3x + c4x2 + c5x3 + c6x4), ug5 + u2(c7 +c8x + c9x2 + c10x3)g, u2g5>, ci ∈ ℤ3, 0≤ i ≤ 10.64
<g7 + u(c0 + c1x)g3 + u2(c2 + c3x + c4x2 + c5x3), ug5 + u2(c6 + c7x + c8x2 + c9x3), u2g4>, ci ∈ ℤ3, 0≤ i ≤ 9.45
<g7 + u(c0 + c1x)g3 + u2(c2 + c3x + c4x2), ug5 + u2(c5 + c6x + c7x2), u2g3 >, ci ∈ ℤ3, 0≤ i ≤ 7.26
<g7 + u(c0 + c1x)g3 + u2(c2 + c3x), ug5 + u2(c4 + c5x), u2g2 >, ci ∈ ℤ3, 0≤ i ≤ 5.27
<g7 + u(c0 + c1x)g3 + u2c2, ug5 + u2c3, u2g >, c0, c1, c2, c3 ∈ ℤ3.28
<g7 + u(c0 + c1x)g3, ug5, u2 >, c0, c1 ∈ ℤ3 .19
<g7 + u(c0 + c1x)g2 + u2(c2 + c3x + c4x2 + c5x3), ug4 + u2(c6 + c7x + c8x2)g, u2g4>, ci ∈ ℤ3, 0≤ i ≤ 8.45
<g7 + u(c0 + c1x)g2 + u2(c2 + c3x + c4x2), ug4 + u2(c5 + c6x + c7x2), u2g3 >, ci ∈ ℤ3, 0≤ i ≤ 7.26
<g7 + u(c0 + c1x)g2 + u2(c2 + c3x), ug4 + u2(c4 + c5x), u2g2 >, ci ∈ ℤ3, 0≤ i ≤ 5.27
<g7 + u(c0 + c1x)g2 + u2c2, ug4 + u2c3, u2g >, c0, c1, c2, c3 ∈ ℤ3.28
Table 9

Non free module negacyclic codes of length 9 over ℤ3 + u3 + u23, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
<g7 + u(c0 + c1x)g2, ug4, u2 >, c0, c1 ∈ ℤ3.19
<g7 + u(c0 + c1x)g + u2(c2 + c3x + c4x2), ug3 + u2(c5 + c6x + c7x2), u2g3 >, ci ∈ ℤ3, 0≤ i ≤ 7.26
<g7 + u(c0 + c1x)g + u2(c2 + c3x), ug3 + u2(c4 + c5x), u2g2 >, ci ∈ ℤ3, 0≤ i ≤ 5.27
<g7 + u(c0 + c1x)g + u2c2, ug3 + u2c3, u2g >, c0, c1, c2, c3 ∈ ℤ3.28
<g7 + u(c0 + c1x)g, ug3, u2 >, c0, c1 ∈ ℤ3 .19
<g7 + u(c0 + c1x) + u2(c2 + c3x), ug2 + u2(c4 + c5x), u2g2 >, ci ∈ ℤ3, 0≤ i ≤ 5.27
<g7 + u(c0 + c1x) + u2c2, ug2 + u2c3, u2g >, c0, c1, c2, c3 ∈ ℤ3.28
<g7 + u(c0 + c1x), ug2, u2 >, c0, c1 ∈ ℤ3 .19
<g7 + uc0 + u2c1, ug + u2c2, u2g >, c0, c1, c2 ∈ ℤ3.28
<g7 + uc0, ug, u2 >, c0 ∈ ℤ3 .19
<g8 + uc0g6 + u2(c1 + c2x + c3x2)g4, ug7 + u2(c4 + c5x)g5, u2g7>, ci ∈ ℤ3, 0≤ i ≤ 5.62
<g8 + uc0g6 + u2(c1 + c2x + c3x2)g3, ug7 + u2(c4 + c5x)g4, u2g6>, ci ∈ ℤ3, 0≤ i ≤ 5. 83
<g8 + uc0g6 + u2(c1 + c2x + c3x2)g2, ug7 + u2(c4 + c5x)g3, u2g5>, ci ∈ ℤ3, 0≤ i ≤ 5.64
<g8 + uc0g6 + u2(c1 + c2x + c3x2)g, ug7 + u2(c4 + c5x)g2, u2g4>, ci ∈ ℤ3, 0≤ i ≤ 5.45
<g8 + uc0g6 + u2(c1 + c2x + c3x2), ug7 + u2(c4 + c5x)g, u2g3>, ci ∈ ℤ3, 0≤ i ≤ 5.26
<g8 + uc0g6 + u2(c1 + c2x), ug7 + u2(c3 + c4x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 4.27
<g8 + uc0g6 + u2c1, ug7 + u2c2, u2g>, c0, c1, c2 ∈ ℤ3 .28
<g8 + uc0g6, ug7, u2>, c0 ∈ ℤ3 .19
<g8 + uc0g5 + u2(c1 + c2x + c3x2 + c4x3)g2, ug6 + u2(c5 + c6x + c7x2)g3, u2g6>, ci ∈ ℤ3, 0≤ i ≤ 7.83
<g8 + uc0g5 + u2(c1 + c2x + c3x2 + c4x3)g, ug6 + u2(c5 + c6x + c7x2)g2, u2g5>, ci ∈ ℤ3, 0≤ i ≤ 7.64
<g8 + uc0g5 + u2(c1 + c2x + c3x2 + c4x3), ug6 + u2(c5 + c6x + c7x2)g, u2g4>, ci ∈ ℤ3, 0≤ i ≤ 7.45
Table 10

Non free module negacyclic codes of length 9 over ℤ3 + u3 + u23, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
<g8 + uc0g5 + u2(c1 + c2x + c3x2), ug6 + u2(c4 + c5x + c6x2),u2g3>, ci ∈ ℤ3, 0≤ i ≤ 6. 26
<g8 + uc0g5 + u2(c1 + c2x), ug6 + u2(c3 + c4x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 4.27
<g8 + uc0g5 + u2c1, ug6 + u2c2, u2g>, c0, c1, c2 ∈ ℤ3 .28
<g8 + uc0g5, ug6, u2>, c0 ∈ ℤ3 .19
<g8 + uc0g4 + u2(c1 + c2x + c3x2 + c4x3 + c5x4), ug5 + u2(c6 + c7x + c8x2)g, u2g5>, ci ∈ ℤ3, 0≤ i ≤ 8.64
<g8 + uc0g4 + u2(c1 + c2x + c3x2 + c4x3), ug5 + u2(c5 + c6x + c7x2 + c8x3), u2g4>, ci ∈ ℤ3, 0≤ i ≤ 8.45
<g8 + uc0g4 + u2(c1 + c2x + c3x2), ug5 + u2(c4 + c5x + c6x2),u2g3>, ci ∈ ℤ3, 0≤ i ≤ 6.26
<g8 + uc0g4 + u2(c1 + c2x), ug5 + u2(c3 + c4x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 4.27
<g8 + uc0g4 + u2c1, ug5 + u2c2, u2g>, c0, c1, c2 ∈ ℤ3 .28
<g8 + uc0g4, ug5, u2>, c0 ∈ ℤ3 .19
<g8 + uc0g3 + u2(c1 + c2x + c3x2 + c4x3), ug4 + u2(c5 + c6x + c7x2 + c8x3), u2g4>, ci ∈ ℤ3, 0≤ i ≤ 8.45
<g8 + uc0g3 + u2(c1 + c2x + c3x2), ug4 + u2(c4 + c5x + c6x2),u2g3>, ci ∈ ℤ3, 0≤ i ≤ 6.26
<g8 + uc0g3 + u2(c1 + c2x), ug4 + u2(c3 + c4x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 4.27
<g8 + uc0g3 + u2c1, ug4 + u2c2, u2g>, c0, c1, c2 ∈ ℤ3 .28
<g8 + uc0g3, ug4, u2>, c0 ∈ ℤ3 .19
<g8 + uc0g2 + u2(c1 + c2x + c3x2), ug3 + u2(c4 + c5x + c6x2),u2g3>, ci ∈ ℤ3, 0≤ i ≤ 6.26
<g8 + uc0g2 + u2(c1 + c2x), ug3 + u2(c3 + c4x), u2g2>, ci ∈ ℤ3. 0≤ i ≤ 4.27
<g8 + uc0g2 + u2c1, ug3 + u2c2, u2g>, c0, c1, c2 ∈ ℤ3 .28
<g8 + uc0g2, ug3, u2>, c0 ∈ ℤ3 .19
<g8 + uc0g + u2(c1 + c2x), ug2 + u2(c3 + c4x), u2g2>, ci ∈ ℤ3, 0≤ i ≤ 4.27
<g8 + uc0g + u2c1, ug2 + u2c2, u2g>, c0, c1, c2 ∈ ℤ3 .28
<g8 + uc0g, ug2, u2>, c0 ∈ ℤ3 .19
Table 11

Non free module negacyclic codes of length 9 over ℤ3 + u3 + u23, u3 = 0.

Non-zero generator polynomialsd(c)Ranks
<g8 + uc0 + u2c1, ug + u2c2, u2g>, c0, c1, c2 ∈ ℤ3 .28
<g8 + uc0, ug, u2>, c0 ∈ ℤ3 .19
<ugi, u2 >, 1≤ i ≤ 8.19
<ugi + u2c0, u2g>, c0\in ℤ3, 1≤ i ≤ 8.28
<ugi + u2(c0 + c1x), u2g2>, c0, c1 ∈ ℤ3, 2≤ i ≤ 7.27
<ugi + u2(c0 + c1x + c2x2), u2g3>, c0, c1, c2 ∈ ℤ3, 3≤ i ≤ 6.26
<ugi + u2(c0 + c1x + c2x2 + c3x3), u2g4>, c0, c1, c2, c3 ∈ ℤ3, i=4,5 .45
<ug8 + u2c0g1, u2g2>, c0 ∈ ℤ3 .27
<ug8 + u2c0g2, u2g3>, c0 ∈ ℤ3 .26
<ug8 + u2c0g3, u2g4>, c0 ∈ ℤ3 .45
<ug8 + u2c0g4, u2g5>, c0 ∈ ℤ3 .64
<ug8 + u2c0g5, u2g6>, c0 ∈ ℤ3 .83
<ug8 + u2c0g6, u2g7>, c0 ∈ ℤ3 .62
<ug8 + u2c0g7, u2g8>, c0 ∈ ℤ3 .91
<ug7 + u2(c0 + c1x)g1, u2g3>, c0, c1 ∈ ℤ3 .26
<ug7 + u2(c0 + c1x)g2, u2g4>, c0, c1 ∈ ℤ3 .45
<ug7 + u2(c0 + c1x)g3, u2g5>, c0, c1 ∈ ℤ3 .64
<ug7 + u2(c0 + c1x)g4, u2g6>, c0, c1 ∈ ℤ3 .83
<ug7 + u2(c0 + c1x)g5, u2g7>, c0, c1 ∈ ℤ3 .62
<ug6 + u2(c0 + c1x + c2x2)g1, u2g4>, c0,c1,c2 ∈ ℤ3 .45
<ug6 + u2(c0 + c1x + c2x2)g2, u2g5>, c0,c1,c2 ∈ ℤ3 .64
<ug6 + u2(c0 + c1x + c2x2)g3, u2g6>, c0,c1,c2 ∈ ℤ3 .83
<ug5 + u2(c0 + c1x + c2x2 + c3x3)g, u2g5>, c0, c1, c2, c3 ∈ ℤ3 .64

7 Conclusion

In this paper, the algebraic structure of the ring Rk,p = ℤp[u]/〈 uk 〉, where p is prime and negacyclic codes over this ring are studied. To find the generator of these code, we discussed the rank and hamming distance over Rk, p. We also presented some example of these codes including the rank and distance. For future study, it would be interesting to investigate the algebraic structure of negacyclic codes over Rk, p, where p is not prime and their rank and minimum distance. Another question is to find new negacyclic codes of general length over that ring.

References

[1] Berleklamp E. R., Negacyclic codes for Lee metric, In Proc. Conf. Combinotorial Mathematics and its Applications, Chapel Hill, NC, (1968), 298-316.Suche in Google Scholar

[2] Wolfmann J., Negacyclic and cyclic codes over ℤ4, IEEE Transactions on Information Theory, 45, 2527-2531, (1999).10.1109/18.796397Suche in Google Scholar

[3] Blackford T., Negacyclic codes over ℤ4 of even Length, IEEE Transactions on Information Theory, 49, 1417-1424, (2003).10.1109/TIT.2003.811915Suche in Google Scholar

[4] Singh A. K., Kewat P. K., On cyclic codes over the ring ℤp[u]/<uk, Designs, Codes and Cryptography, 74, 1-13, (2015).10.1007/s10623-013-9843-2Suche in Google Scholar

[5] Shi M., Zhu S., Cyclic codes over the ring ℤp2 of length pe, Journal of Electronics (China), 25, 636-640, (2008).10.1007/s11767-007-0071-7Suche in Google Scholar

[6] Dougherty S. T., Karadeniz S., Yildiz B., Cyclic code over Rk, Designs, Codes and Cryptography, 63, 113-126, (2012).10.1007/s10623-011-9539-4Suche in Google Scholar

[7] Zhu S. X., Kai X., Dual and self-dual negacyclic codes of even length over ℤ2a, Discrete Mathematics, 13, 7-10, (2008).Suche in Google Scholar

[8] Abualrub T., Ghrayeb A., Oehmke R. H., A mass formula and rank of ℤ4 cyclic codes of length 2e, IEEE Transactions on Information Theory, 50, 3306-3312, (2004).10.1109/TIT.2004.838109Suche in Google Scholar

[9] Al-Ashker M., Hamoudeh M., Cyclic codes over ℤ2 + u2 + u22 +⋯+ uk−12, Turk. J. Math, 35, 737-749, (2011).Suche in Google Scholar

[10] Calderbank A. R., Sloane N. J . A., Modular and p-adic cyclic codes. Designs, Codes and Cryptography, 6, 21-35, (1995).10.1007/BF01390768Suche in Google Scholar

[11] Bonnecaze A., Udaya P., Cyclic codes and self-dual codes over 𝔽2 + u𝔽2, IEEE Transactions on Information Theory, 45, 1250-1255, (1999).10.1109/18.761278Suche in Google Scholar

[12] Dougherty S. T., Gaborit P., Harada M., Solé P., Type II codes over 𝔽2 + u𝔽2, IEEE Transactions on Information Theory, 45, 32-45, (1999).10.1109/18.746770Suche in Google Scholar

[13] Ling S., Solé P., Type II codes over 𝔽4 + u𝔽4, European J. Combin, 12, 983-997, (2001).10.1006/eujc.2001.0509Suche in Google Scholar

[14] Dougherty S. T., Gaborit P., Harada M., Munemasa A., Solé P., Type IV self-dual codes over rings, IEEE Transactions on Information Theory, 45, 2345-2358, (1999).10.1109/18.796375Suche in Google Scholar

[15] Abualrub T., Siap I., Cyclic codes over the rings ℤ2 + u2 and ℤ2 + u2 + u22, Designs, Codes and Cryptography, 42, 273-287, (2007).10.1007/s10623-006-9034-5Suche in Google Scholar

[16] Dinh H. Q., Löpez-Permouth S. R., Cyclic and Negacyclic Codes Over Finite Chain Rings, IEEE Transactions on Information Theory, 50, 1728-1744, (2004).10.1109/TIT.2004.831789Suche in Google Scholar

[17] Dinh H. Q., Negacyclic codes of length 2s over Galois rings, IEEE Transactions on Information Theory, 51, 4252-4262, (2005).10.1109/TIT.2005.859284Suche in Google Scholar

Received: 2015-11-30
Accepted: 2016-4-19
Published Online: 2016-7-8
Published in Print: 2016-1-1

© A. K. Singh et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Artikel in diesem Heft

  1. Regular articles
  2. Speeding of α Decay in Strong Laser Fields
  3. Regular articles
  4. Multi-soliton rational solutions for some nonlinear evolution equations
  5. Regular articles
  6. Thin film flow of an Oldroyd 6-constant fluid over a moving belt: an analytic approximate solution
  7. Regular articles
  8. Bilinearization and new multi-soliton solutions of mKdV hierarchy with time-dependent coefficients
  9. Regular articles
  10. Duality relation among the Hamiltonian structures of a parametric coupled Korteweg-de Vries system
  11. Regular articles
  12. Modeling the potential energy field caused by mass density distribution with Eton approach
  13. Regular articles
  14. Climate Solutions based on advanced scientific discoveries of Allatra physics
  15. Regular articles
  16. Investigation of TLD-700 energy response to low energy x-ray encountered in diagnostic radiology
  17. Regular articles
  18. Synthesis of Pt nanowires with the participation of physical vapour deposition
  19. Regular articles
  20. Quantum discord and entanglement in grover search algorithm
  21. Regular articles
  22. On order statistics from nonidentical discrete random variables
  23. Regular articles
  24. Charmed hadron photoproduction at COMPASS
  25. Regular articles
  26. Perturbation solutions for a micropolar fluid flow in a semi-infinite expanding or contracting pipe with large injection or suction through porous wall
  27. Regular articles
  28. Flap motion of helicopter rotors with novel, dynamic stall model
  29. Regular articles
  30. Impact of severe cracked germanium (111) substrate on aluminum indium gallium phosphate light-emitting-diode’s electro-optical performance
  31. Regular articles
  32. Slow-fast effect and generation mechanism of brusselator based on coordinate transformation
  33. Regular articles
  34. Space-time spectral collocation algorithm for solving time-fractional Tricomi-type equations
  35. Regular articles
  36. Recent Progress in Search for Dark Sector Signatures
  37. Regular articles
  38. Recent progress in organic spintronics
  39. Regular articles
  40. On the Construction of a Surface Family with Common Geodesic in Galilean Space G3
  41. Regular articles
  42. Self-healing phenomena of graphene: potential and applications
  43. Regular articles
  44. Viscous flow and heat transfer over an unsteady stretching surface
  45. Regular articles
  46. Spacetime Exterior to a Star: Against Asymptotic Flatness
  47. Regular articles
  48. Continuum dynamics and the electromagnetic field in the scalar ether theory of gravitation
  49. Regular articles
  50. Corrosion and mechanical properties of AM50 magnesium alloy after modified by different amounts of rare earth element Gadolinium
  51. Regular articles
  52. Genocchi Wavelet-like Operational Matrix and its Application for Solving Non-linear Fractional Differential Equations
  53. Regular articles
  54. Energy and Wave function Analysis on Harmonic Oscillator Under Simultaneous Non-Hermitian Transformations of Co-ordinate and Momentum: Iso-spectral case
  55. Regular articles
  56. Unification of all hyperbolic tangent function methods
  57. Regular articles
  58. Analytical solution for the correlator with Gribov propagators
  59. Regular articles
  60. A New Algorithm for the Approximation of the Schrödinger Equation
  61. Regular articles
  62. Analytical solutions for the fractional diffusion-advection equation describing super-diffusion
  63. Regular articles
  64. On the fractional differential equations with not instantaneous impulses
  65. Topical Issue: Uncertain Differential Equations: Theory, Methods and Applications
  66. Exact solutions of the Biswas-Milovic equation, the ZK(m,n,k) equation and the K(m,n) equation using the generalized Kudryashov method
  67. Topical Issue: Uncertain Differential Equations: Theory, Methods and Applications
  68. Numerical solution of two dimensional time fractional-order biological population model
  69. Topical Issue: Uncertain Differential Equations: Theory, Methods and Applications
  70. Rotational surfaces in isotropic spaces satisfying weingarten conditions
  71. Topical Issue: Uncertain Differential Equations: Theory, Methods and Applications
  72. Anti-synchronization of fractional order chaotic and hyperchaotic systems with fully unknown parameters using modified adaptive control
  73. Topical Issue: Uncertain Differential Equations: Theory, Methods and Applications
  74. Approximate solutions to the nonlinear Klein-Gordon equation in de Sitter spacetime
  75. Topical Issue: Uncertain Differential Equations: Theory, Methods and Applications
  76. Stability and Analytic Solutions of an Optimal Control Problem on the Schrödinger Lie Group
  77. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  78. Logical entropy of quantum dynamical systems
  79. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  80. An efficient algorithm for solving fractional differential equations with boundary conditions
  81. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  82. A numerical method for solving systems of higher order linear functional differential equations
  83. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  84. Nonlinear self adjointness, conservation laws and exact solutions of ill-posed Boussinesq equation
  85. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  86. On combined optical solitons of the one-dimensional Schrödinger’s equation with time dependent coefficients
  87. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  88. On soliton solutions of the Wu-Zhang system
  89. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  90. Comparison between the (G’/G) - expansion method and the modified extended tanh method
  91. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  92. On the union of graded prime ideals
  93. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  94. Oscillation criteria for nonlinear fractional differential equation with damping term
  95. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  96. A new method for computing the reliability of consecutive k-out-of-n:F systems
  97. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  98. A time-delay equation: well-posedness to optimal control
  99. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  100. Numerical solutions of multi-order fractional differential equations by Boubaker polynomials
  101. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  102. Laplace homotopy perturbation method for Burgers equation with space- and time-fractional order
  103. Topical Issue: Recent Developments in Applied and Engineering Mathematics
  104. The calculation of the optical gap energy of ZnXO (X = Bi, Sn and Fe)
  105. Special Issue: Advanced Computational Modelling of Nonlinear Physical Phenomena
  106. Analysis of time-fractional hunter-saxton equation: a model of neumatic liquid crystal
  107. Special Issue: Advanced Computational Modelling of Nonlinear Physical Phenomena
  108. A certain sequence of functions involving the Aleph function
  109. Special Issue: Advanced Computational Modelling of Nonlinear Physical Phenomena
  110. On negacyclic codes over the ring ℤp + up + . . . + uk + 1p
  111. Special Issue: Advanced Computational Modelling of Nonlinear Physical Phenomena
  112. Solitary and compacton solutions of fractional KdV-like equations
  113. Special Issue: Advanced Computational Modelling of Nonlinear Physical Phenomena
  114. Regarding on the exact solutions for the nonlinear fractional differential equations
  115. Special Issue: Advanced Computational Modelling of Nonlinear Physical Phenomena
  116. Non-local Integrals and Derivatives on Fractal Sets with Applications
  117. Special Issue: Advanced Computational Modelling of Nonlinear Physical Phenomena
  118. On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method
  119. Special issue on Information Technology and Computational Physics
  120. On uninorms and nullnorms on direct product of bounded lattices
  121. Special issue on Information Technology and Computational Physics
  122. Phase-space description of the coherent state dynamics in a small one-dimensional system
  123. Special issue on Information Technology and Computational Physics
  124. Automated Program Design – an Example Solving a Weather Forecasting Problem
  125. Special issue on Information Technology and Computational Physics
  126. Stress - Strain Response of the Human Spine Intervertebral Disc As an Anisotropic Body. Mathematical Modeling and Computation
  127. Special issue on Information Technology and Computational Physics
  128. Numerical solution to the Complex 2D Helmholtz Equation based on Finite Volume Method with Impedance Boundary Conditions
  129. Special issue on Information Technology and Computational Physics
  130. Application of Genetic Algorithm and Particle Swarm Optimization techniques for improved image steganography systems
  131. Special issue on Information Technology and Computational Physics
  132. Intelligent Chatter Bot for Regulation Search
  133. Special issue on Information Technology and Computational Physics
  134. Modeling and optimization of Quality of Service routing in Mobile Ad hoc Networks
  135. Special issue on Information Technology and Computational Physics
  136. Resource management for server virtualization under the limitations of recovery time objective
  137. Special issue on Information Technology and Computational Physics
  138. MODY – calculation of ordered structures by symmetry-adapted functions
  139. Special issue on Information Technology and Computational Physics
  140. Survey of Object-Based Data Reduction Techniques in Observational Astronomy
  141. Special issue on Information Technology and Computational Physics
  142. Optimization of the prediction of second refined wavelet coefficients in electron structure calculations
  143. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  144. Droplet spreading and permeating on the hybrid-wettability porous substrates: a lattice Boltzmann method study
  145. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  146. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media
  147. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  148. Effect of the Pore Size Distribution on the Displacement Efficiency of Multiphase Flow in Porous Media
  149. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  150. Numerical heat transfer analysis of transcritical hydrocarbon fuel flow in a tube partially filled with porous media
  151. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  152. Experimental Investigation on Oil Enhancement Mechanism of Hot Water Injection in tight reservoirs
  153. Special Issue on Research Frontier on Molecular Reaction Dynamics
  154. Role of intramolecular hydrogen bonding in the excited-state intramolecular double proton transfer (ESIDPT) of calix[4]arene: A TDDFT study
  155. Special Issue on Research Frontier on Molecular Reaction Dynamics
  156. Hydrogen-bonding study of photoexcited 4-nitro-1,8-naphthalimide in hydrogen-donating solvents
  157. Special Issue on Research Frontier on Molecular Reaction Dynamics
  158. The Interaction between Graphene and Oxygen Atom
  159. Special Issue on Research Frontier on Molecular Reaction Dynamics
  160. Kinetics of the austenitization in the Fe-Mo-C ternary alloys during continuous heating
  161. Special Issue: Functional Advanced and Nanomaterials
  162. Colloidal synthesis of Culn0.75Ga0.25Se2 nanoparticles and their photovoltaic performance
  163. Special Issue: Functional Advanced and Nanomaterials
  164. Positioning and aligning CNTs by external magnetic field to assist localised epoxy cure
  165. Special Issue: Functional Advanced and Nanomaterials
  166. Quasi-planar elemental clusters in pair interactions approximation
  167. Special Issue: Functional Advanced and Nanomaterials
  168. Variable Viscosity Effects on Time Dependent Magnetic Nanofluid Flow past a Stretchable Rotating Plate
Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/phys-2016-0027/html
Button zum nach oben scrollen