Endotoxin detection in nanoliposomes using diluted Limulus Amebocyte Lysate and isothermal titration calorimetry
-
Arquímedes Velásquez
, Franklin Binns , Andrea Mariela Araya-Sibaja , José Roberto Vega-Baudrit , Reinaldo Pereira-Reyes and Yendry Regina Corrales-Ureña
Abstract
The increasing use of nanomaterial-based products, such as nanoliposome vaccines, has amplified the need for reliable endotoxin testing, particularly for intravenous applications. Conventional Limulus Amebocyte Lysate (LAL) assays can be compromised by nanomaterials or formulation components that mask endotoxins, highlighting the need for alternative detection strategies. Here, we evaluated isothermal titration calorimetry (ITC) for detecting endotoxins encapsulated in two types of nanoliposomes (NLPs) and assessed the influence of individual NLP components on LAL enzymatic activity and viscosity. NLPs were synthesized in the presence of endotoxins, dialyzed to remove non-bound endotoxins, and characterized using high-performance liquid chromatography (HPLC) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to confirm endotoxin incorporation. Dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to assess size, morphology, and aggregation behavior Endotoxins produce with C 16:0 and C18:1 lipids were found to integrate into NLPs, impeding enzymatic reactions in LAL assays, with loading varying according to NLP type. For ITC detection, NLPs were disrupted using 0.2 % Triton X in a 3:2 nanoliposome-to-detergent ratio followed by brief ultrasonication. Despite the additional time and energy required for ITC experiments, the ITC provides a sensitive alternative to LAL, decreasing reliance on horseshoe crab reagents, visual inspection, and chromophores, while remaining insensitive to turbidity and broadly applicable to both organic and inorganic nanomaterials.
Acknowledgments
Microbiología Farmaceutica de Costa Rica.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: AV: Investigations; RPR: investigations, FB: formal analysis and writing; AA. Investigations and writing; YRCU: methodology, JRVB: writing and review and editing; supervisions, formal analysis writing and review and editing.
-
Use of Large Language Models, AI and Machine Learning Tools: Chat GPT to correct english.
-
Conflict of interest: Not applicable.
-
Research funding: None declared.
-
Data availability: Under request.
References
1. Global Market Insights. 2023 (accessed 2024-05-25).Search in Google Scholar
2. Badiani, A. A.; Patel, J. A.; Ziolkowski, K.; Nielsen, F. B. H. Pfizer: the Miracle Vaccine for COVID-19? Publ. Health. Pract. (Oxf) 2020, 100061; https://doi.org/10.1016/j.puhip.2020.100061.Search in Google Scholar PubMed PubMed Central
3. Office of the Commissioner. Pfizer-BioNTech COVID-19 Vaccine, 2021. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine (accessed 2024-05-25).Search in Google Scholar
4. Basauri, A.; González-Fernández, C.; Fallanza, M.; Bringas, E.; Fernandez-Lopez, R.; Giner, L.; Moncalián, G.; de la Cruz, F.; Ortiz, I. Biochemical Interactions Between LPS and LPS-Binding Molecules. Crit. Rev. Biotechnol. 2020, 40, 292–305; https://doi.org/10.1080/07388551.2019.1709797.Search in Google Scholar PubMed
5. Bolden, J. S.; Warburton, R. E.; Phelan, R.; Murphy, M.; Smith, K. R.; De Felippis, M. R.; Chen, D. Endotoxin Recovery Using Limulus Amebocyte Lysate (LAL) Assay. Biologicals 2016, 44, 434–40; https://doi.org/10.1016/j.biologicals.2016.04.009.Search in Google Scholar PubMed
6. Correa, W.; Brandenburg, K.; Zähringer, U.; Ravuri, K.; Khan, T.; von Wintzingerode, F. Biophysical Analysis of Lipopolysaccharide Formulations for an Understanding of the Low Endotoxin Recovery (LER) Phenomenon. Int. J. Mol. Sci. 2017, 16, 2737; https://doi.org/10.3390/ijms18122737.Search in Google Scholar PubMed PubMed Central
7. Food and drug administration office of regulatory affairs, Office of Regulatory Science. Pharmaceutical Microbiology Manual. Document Number ORA.007. https://www.fda.gov/media/88801/download (accessed 2024-05-25).Search in Google Scholar
8. Mueller, M.; Lindner, B.; Kusumoto, S.; Fukase, K.; Schromm, A. B.; Seydel, U. Aggregates are the Biologically Active Units of Endotoxin. J. Biol. Chem. 2004, 279, 26307–13; https://doi.org/10.1074/jbc.M401231200.Search in Google Scholar PubMed
9. ANSI/AAMI ST72. Bacterial endotoxins–Test Methods, Routine Monitoring, and Alternatives to Batch Testing. Arlington, VA. Assoc. Adv. Med. Instrum. 2019, 2011 (accessed 2024-05-25).Search in Google Scholar
10. Thorne, P. S.; Perry, S. S.; Saito, R.; O’Shaughnessy, P. T.; Mehaffy, J.; Metwali, N.; Keefe, T.; Donham, K. J.; Reynolds, S. J. Evaluation of the Limulus Amebocyte Lysate and Recombinant Factor C Assays for Assessment of Airborne Endotoxin. Appl. Environ. Microbiol. 2010, 76, 4988–95; https://doi.org/10.1128/AEM.00527-10.Search in Google Scholar PubMed PubMed Central
11. Esch, R. K.; Han, L.; Foarde, K. K.; Ensor, D. S. Endotoxin Contamination of Engineered Nanomaterials. Nanotoxicology 2010, 4, 73–83; https://doi.org/10.3109/17435390903428851.Search in Google Scholar PubMed
12. Recombinant factor C: new Ph. Eur. Chapter Available as of 1 July 2020. European Directorate for the Quality of Medicines & Health Care. (accessed 2024-05-25).Search in Google Scholar
13. Guidance for Industry Pyrogen and Endotoxins Testing. Questions and Answers, 2018. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-pyrogen-and-endotoxins-testing-questions-and-answers (accessed 2024-05-25).Search in Google Scholar
14. Li, Y.; Fujita, M.; Boraschi, D. Endotoxin Contamination in Nanomaterials Leads to the Misinterpretation of Immunosafety Results. Front. Immunol. 2017, 8, 472; https://doi.org/10.3389/fimmu.2017.00472.Search in Google Scholar PubMed PubMed Central
15. ISO. ISO 29701:2010, Information Technology – Sensor Network Testing Methods, Ed. 1; International Organization for Standardization, 2010. Available from: https://www.iso.org/obp/ui/#iso:std:iso:29701:ed-1:v1:en.Search in Google Scholar
16. Mangini, M.; Verde, A.; Boraschi, D.; Puntes, V. F.; Italiani, P.; De Luca, A. C. Interaction of Nanoparticles with Endotoxin Importance in Nanosafety Testing and Exploitation for Endotoxin Binding. Nanotoxicology 2021, 15, 558–576; https://doi.org/10.1080/17435390.2021.1898690.Search in Google Scholar PubMed
17. Schwarz, H.; Gornicec, J.; Neuper, T.; Parigiani, M. A.; Wallner, M.; Duschl, A.; Horejs-Hoeck, J. Biological Activity of Masked Endotoxin. Sci. Rep. 2017, 20, 44750; https://doi.org/10.1038/srep44750.Search in Google Scholar PubMed PubMed Central
18. Dijkstra, J.; Mellors, J. W.; Ryan, J. L.; Szoka, F. C. Modulation of the Biological Activity of Bacterial Endotoxin by Incorporation into Liposomes. J. Immunol. 1987, 138 (8), 2663–2670; https://doi.org/10.4049/jimmunol.138.8.2663. https://pubmed.ncbi.nlm.nih.gov/3494081.Search in Google Scholar
19. Dobrovolskaia, M. A.; Neun, B. W.; Clogston, J. D.; Ding, H.; Ljubimova, J.; McNeil, S. E. Ambiguities in Applying Traditional Limulus Amebocyte Lysate Tests to Quantify Endotoxin in Nanoparticle Formulations. Nanomedicine (Lond). 2010, 5 (4), 555–62; https://doi.org/10.2217/nnm.10.29.Search in Google Scholar PubMed PubMed Central
20. Maximova, K.; Wojtczak, J.; Trylska, J. Enzyme Kinetics in Crowded Solutions from Isothermal Titration Calorimetry. Anal. Biochem. 2019, 567, 96–105; https://doi.org/10.1016/j.ab.2018.11.016.Search in Google Scholar PubMed
21. Kayitmazer, A. B. Thermodynamics of Complex Coacervation. Adv. Colloid Interface Sci. 2017, 239, 169–177; https://doi.org/10.1016/j.cis.2016.07.006.Search in Google Scholar PubMed
22. Liu, Y.; Wang, S.; Sun, D.; Liu, Y.; Liu, Y.; Wang, Y.; Liu, C.; Wu, H.; Lv, Y.; Ren, Y.; Guo, X.; Sun, G.; Ma, X. Development of a Biomimetic Chondroitin sulfate-modified Hydrogel to Enhance the Metastasis of Tumor Cells. Sci. Rep. 2016, 6, 29858; https://doi.org/10.1038/srep29858.Search in Google Scholar PubMed PubMed Central
23. Fuhrer, L. M.; Sun, S.; Boyko, V.; Kellermeier, M.; Cölfen, H. Tuning the Properties of Hydrogels Made from Poly(acrylic acid) and Calcium Salts. Phys. Chem. Chem. Phys. 2020, 22, 18631–18638; https://doi.org/10.1039/D0CP02649B.Search in Google Scholar
24. Wang, Y.; Wang, G.; Moitessier, N.; Mittermaier, A. K. Enzyme Kinetics by Isothermal Titration Calorimetry: Allostery, Inhibition, and Dynamics. Front. Mol. Biosci. 2020, 7, 583826; https://doi.org/10.3389/fmolb.2020.583826.Search in Google Scholar PubMed PubMed Central
25. Siddiqui, K. S.; Poljak, A.; Ertan, H.; Bridge, W. The Use of Isothermal Titration Calorimetry for the Assay of Enzyme Activity: Application in Higher Education Practical Classes. Biochem. Mol. Biol. Educ. 2022, 50, 519–526; https://doi.org/10.1002/bmb.21657.Search in Google Scholar PubMed PubMed Central
26. Ding, J. L.; Ho, B. Endotoxin Detection – from Limulus Amebocyte Lysate to Recombinant Factor C. In Endotoxins: Structure, Function and Recognition; Wang, X.; Quinn, P., Eds.; Subcellular Biochemistry, Vol. 53, 2010; https://doi.org/10.1007/978-90-481-9078-2_9.Search in Google Scholar PubMed
27. Iwanaga, S. The Limulus Clotting Reaction. Curr. Opin. Immunol. 1993, 1, 74–82; https://doi.org/10.1016/0952-7915(93)90084-6.Search in Google Scholar PubMed
28. Novitsky, T. J. Biomedical Applications of Limulus Amebocyte Lysate. In Biology and Conservation of Horseshoe Crabs; Tanacredi, J.; Botton, M.; Smith, D., Eds.; Springer: Boston, MA, 2009.10.1007/978-0-387-89959-6_20Search in Google Scholar
29. Schneier, M.; Razdan, S.; Miller, A. M.; Briceno, M. E.; Barua, S. Current Technologies to Endotoxin Detection and Removal for Biopharmaceutical Purification. Biotechnol. Bioeng. 2020, 117, 2588–2609; https://doi.org/10.1002/bit.27362.Search in Google Scholar PubMed
30. Hassan, M.; Ilev, I. Grazing Incidence Angle Based Sensing Approach Integrated with fiber-optic Fourier Transform Infrared (FO-FTIR) Spectroscopy for Remote and Label-free Detection of Medical Device Contaminations. Rev. Sci. Instrum. 2014, 85 (10), 103108; https://doi.org/10.1063/1.4897247.Search in Google Scholar PubMed
31. Armstrong, C. L.; Häußler, W.; Seydel, T.; Katsaras, J.; Rheinstädter, M. C. Nanosecond Lipid Dynamics in Membranes Containing Cholesterol. Soft Matter 2014, 10, 2600–2611; https://doi.org/10.1039/c3sm51757h.Search in Google Scholar PubMed
32. De Flores, L. P.; Ganim, Z.; Nicodemus, R. A.; Tokmakoff, A. Amide I′−II′ 2D IR Spectroscopy Provides Enhanced Protein Secondary Structural Sensitivity. JACS 2009, 131, 3385–3391.10.1021/ja8094922Search in Google Scholar PubMed
33. Németh, Z.; Csóka, I.; Semnani Jazani, R.; Sipos, B.; Haspel, H.; Kozma, G.; Kónya, Z.; Dobó, D. G. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics 2022, 14 (9), 1798; https://doi.org/10.3390/pharmaceutics14091798.Search in Google Scholar PubMed PubMed Central
34. Vargas, R.; Romero, M.; Berasategui, T.; Narváez-Narváez, D. A.; Ramirez, P.; Nardi-Ricart, A.; García-Montoya, E.; Pérez-Lozano, P.; Suñe-Negre, J. M.; Moreno-Castro, C.; Hernández-Munain, C.; Suñe, C.; Suñe-Pou, M. Dialysis is a Key Factor Modulating Interactions Between Critical Process Parameters During the Microfluidic Preparation of Lipid Nanoparticles. Colloid Interface Sci. Commun. 2023, 54; https://doi.org/10.1016/j.colcom.2023.100709.Search in Google Scholar
35. Harmon, P.; Cabral-Lilly, D.; Reed, R. A.; Maurio, F. P.; Franklin, J. C.; Janoff, A. The Release and Detection of Endotoxin from Liposomes. Anal. Biochem. 1997, 250, 139–46; https://doi.org/10.1006/abio.1997.2216.Search in Google Scholar PubMed
36. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/compound/Triton-X-100 (accessed 2024-05-25).Search in Google Scholar
37. Muramatsu, H.; Tamiya, E.; Suzuki, M.; Karube, I. Viscosity Monitoring with a Piezoelectric Quartz Crystal and its Application to Determination of Endotoxin by Gelation of Limulus Amebocyte Lysate. Anal. Chim. Acta 1988, 215, 91–98; https://doi.org/10.1016/S0003-2670(00)85269-1.Search in Google Scholar
38. Guvendiren, M.; Lu, H. D.; Burdick, J. A. Shear-Thinning Hydrogels for Biomedical Applications. Soft Matter 2012, 8, 260–272; https://doi.org/10.1039/c1sm06513k.Search in Google Scholar
39. Nicoud, L.; Lattuada, M.; Yates, A.; Morbidelli, M. Impact of Aggregate Formation on the Viscosity of Protein Solutions. Soft Matter 2015, 11 (27), 5513–5522; https://doi.org/10.1039/c5sm00513b.Search in Google Scholar PubMed
40. Usoltsev, D.; Sitnikova, V.; Kajava, A.; Uspenskaya, M. Systematic FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin under Various Denaturation Conditions. Biomolecules 2019, 9 (8), 359; https://doi.org/10.3390/biom9080359.Search in Google Scholar PubMed PubMed Central
41. Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. (Shanghai) 2007, 39 (8), 549–559; https://doi.org/10.1111/j.1745-7270.2007.00320.x.Search in Google Scholar PubMed
© 2025 IUPAC & De Gruyter