Pichichio extracts (Solanum mammosum) as a corrosion inhibitor of low carbon steel in an acidic environment
Abstract
Pichichio (Solanum mammosum) is a tropical plant known for its pharmacological properties, primarily associated with its fruit and leaves. Ethanolic extracts of its fruit and leaves are being studied for the first time as a green corrosion inhibitor due to their effectiveness on low carbon steel in acidic medium (1.0 M HCl) based on ASTM G 31. The extracts Fourier Transform Infrared (FTIR) spectra and High Performance Thin Layer Chromatography had identified coumarins, polyphenolic compounds, and possible anthraquinones. Pichichio leaf extract (PLE) exhibiting higher antioxidant capacity compared to pichichio fruit extract (PFE) but this property does not show a clear correlation with inhibition efficiency. Gravimetric analysis indicated that both extracts provide significant corrosion inhibition (greater than 90 %) at concentrations of 1000 mg L−1, though the inhibition efficiency decreases with lower concentrations, higher temperatures, and extended application times. Electrochemical analysis revealed Randles-type behavior with deviations at low frequencies, as well as slight variations in the open circuit potential (Eoc) and Tafel slopes. Both extracts (PLE and PFE) act as mixed-type inhibitors, with a predominant barrier effect, displaying Langmuir-type adsorption curves for PFE and Flory-Huggins-type for PLE. The variations in the thermodynamic adsorption energies are significant only for PFE, suggesting better surface interaction. Surface visualization through physical methods suggests that the extracts reduce overall surface roughness, which correlates well with their barrier effect.
Funding source: Consejo Nacional de Rectores [National Council of Rectors]
Award Identifier / Grant number: OF-ACUERDO-CVI-423-2023
Funding source: Universidad Nacional
Award Identifier / Grant number: UNA-SIA-0078-2024
Funding source: Universidad Estatal A Distancia
Award Identifier / Grant number: Proy-2022-24
Acknowledgements
Special thanks to the Laboratory of Experimental Sciences Research Laboratory of the UNED for their collaboration in the generation of the extracts. Special thanks to Dra. Angeles Arena Vara of the CENIM, Spain, for her support in data analysis.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Conceptualization and writing original draft: JRY, VCC. Methodology: VCC. Formal analysis, and data curation: JRY, VCC, PJB, VAV. Writing review and editing: JRY, project administration, supervision, and funding acquisition: JRY, PJB, VAV. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interests: All other authors state no conflict of interest.
-
Research funding: This study was funded by the National Council of University Rectors (CONARE) of Costa Rica (OF-ACUERDO-CVI-423-2023), as part of the FEES-2024, grant number UNA-SIA-0078-24 project, and also it was funded by National University at Distance (UNED) grant number: PROY - 2022-24 project.
-
Data availability: Data will be shared upon request at jrodriguezy@uned.ac.cr.
References
1. Holla, B. R.; Mahesh, R.; Manjunath, H.; Anjanapura, V. R. Plant Extracts as Green Corrosion Inhibitors for Different Kinds of Steel: A Review. Heliyon 2024, 10 (14), e33748. https://doi.org/10.1016/j.heliyon.2024.e33748.Suche in Google Scholar PubMed PubMed Central
2. López, L. Pre-factibilidad técnica y financiera para el acondicionamiento de la calidad del agua en el sistema contra incendios de la Refinería Costarricense de Petróleo ubicada en Moín, Limón, Proyecto de graduación, Licenciatura en ingeniería química; Universidad de Costa Rica: San José, Costa Rica, 2015. https://repositorio.sibdi.ucr.ac.cr/handle/123456789/7197 (accessed 09 10, 2024).Suche in Google Scholar
3. Umaña, P. Costa Rica mantiene alta dependencia de hierro y acero importado de Ucrania; La Nación, 2022. https://www.nacion.com/economia/negocios/costa-rica-mantiene-alta-dependencia-de-hierro-y/GPEN6CV3S5ETTBJYPFJNVMU42A/story/ (accessed 09 15, 2024).Suche in Google Scholar
4. Popoola, L. T. Organic Green Corrosion Inhibitors (OGCIs): A Critical Review. Corr. Rev. 2019, 37 (2), 71–102. https://doi.org/10.1515/corrrev-2018-0058.Suche in Google Scholar
5. Huang, Y.; Zhang, J., Eds. Materials corrosion and protection; De Gruyter: Berlin, Germany, 2018.10.1515/9783110310054Suche in Google Scholar
6. Brycki, B. E.; Kowalczyk, I. H.; Szulc, A.; Kaczerewska, O.; Pakiet, M. Organic Corrosion Inhibitors; InTech eBooks: London, UK, 2018.10.5772/intechopen.72943Suche in Google Scholar
7. Verma, C.; Chauhan, D. S.; Aslam, R.; Banerjee, P.; Aslam, J.; Quadri, T. W.; Zehra, S.; Verma, D. K.; Quraishi, M. A.; Dubey, S.; Al Fantazi, A.; Rasheed, T. Principles and Theories of Green Chemistry for Corrosion Science and Engineering: Design and Application. Green Chem. 2024, 26 (8), 4270–4357. https://doi.org/10.1039/d3gc05207a.Suche in Google Scholar
8. Sastri, V. S. Green Corrosion Inhibitors: Theory and Practice; John Wiley & Sons: Hoboken, New Jersey, USA, 2011.10.1002/9781118015438Suche in Google Scholar
9. Al-Moghrabi, R. S.; Abdel-Gaber, A. M.; Rahal, H. T. Corrosion Inhibition of Mild Steel in Hydrochloric and Nitric Acid Solutions Using Willow Leaf Extract. Prot. Met. Phys. Chem. Surf. 2019, 55, 603–607. https://doi.org/10.1134/S2070205119030031.Suche in Google Scholar
10. Abdel-Gaber, A. M.; Rahal, H. T.; Beqai, F. T. Eucalyptus Leaf Extract as a eco-friendly Corrosion Inhibitor for Mild Steel in Sulfuric and Phosphoric Acid Solutions. Int. J. Ind. Chem. 2020, 11, 123–132. https://doi.org/10.1007/s40090-020-00207-z.Suche in Google Scholar
11. Kilo, M.; Rahal, H. T.; El-Dakdouki, M. H.; Abdel-Gaber, A. M. Study of the Corrosion and Inhibition Mechanism for Carbon Steel and Zinc Alloys by an eco-friendly Inhibitor in Acidic Solution. Chem. Eng. Commun. 2020, 208 (12), 1676–1685. https://doi.org/10.1080/00986445.2020.1811239.Suche in Google Scholar
12. Al-Moghrabi, R. S.; Abdel-Gaber, A. M.; Rahal, H. T. A Comparative Study on the Inhibitive Effect of Crataegus oxyacantha and Prunus avium Plant Leaf Extracts on the Corrosion of Mild Steel in Hydrochloric Acid Solution. Int. J. Ind. Chem. 2018, 9, 255–263. https://doi.org/10.1007/s40090-018-0154-3.Suche in Google Scholar
13. Cabanillas, B.; Chassagne, F.; Vásquez-Ocmín, P.; Tahrioui, A.; Chevalier, S.; Vansteelandt, M.; Triastuti, A.; Amasifuen Guerra, C. A.; Fabre, N.; Haddad, M. Pharmacological Validation of Solanum mammosum L. as an Anti-infective Agent: Role of Solamargine. J. Ethnopharmacol. 2021, 280, 114473. https://doi.org/10.1016/j.jep.2021.114473.Suche in Google Scholar PubMed
14. Pilaquinga, F.; Morejón, B.; Ganchala, D.; Morey, J.; Piña, N.; Debut, A.; Neira, M. Green Synthesis of Silver Nanoparticles Using Solanum mammosum L. (Solanaceae) Fruit Extract and Their Larvicidal Activity Against Aedes aegypti L. (Diptera: Culicidae). PLoS One 2019, 14 (10), e0224109. https://doi.org/10.1371/journal.pone.0224109.Suche in Google Scholar PubMed PubMed Central
15. Quijano, M.; RieraRuiz, C.; Barragan, A.; Miranda, M.; Orellana, T.; Manzano, P. Molluscicidal Activity of the Aqueous Extracts from Solanum mammosum L., Sapindus Saponaria L. and Jatropha curcas L. Against Pomacea canaliculata. Emir. J. Food Agric. 2014, 26 (10), 871. https://doi.org/10.9755/ejfa.v26i10.18804.Suche in Google Scholar
16. Pilaquinga, F.; Bosch, R.; Morey, J.; Bastidas-Caldes, C.; Torres, M.; Toscano, F.; Debut, A.; Pazmiño-Viteri, K.; Nieves Piña, M. d. l. High in Vitro Activity of Gold and Silver Nanoparticles from Solanum mammosum L. Against SARS-CoV-2 Surrogate Phi6 and Viral Model PhiX174. Nanotechnology 2023, 34 (17), 175705. https://doi.org/10.1088/1361-6528/acb558.Suche in Google Scholar PubMed
17. Vega-López, B.; Carvajal-Miranda, Y.; Brenes-Peralta, L.; Gamboa-Murillo, M.; Venegas-Padilla, J.; Rodríguez, G.; Jiménez-Bonilla, P.; Álvarez-Valverde, V. Phytonutraceutical Evaluation of Five Varieties of Tomato (Solanum lycopersicum) During Ripening and Processing. LWT 2022, 164, 113592. https://doi.org/10.1016/j.lwt.2022.113592.Suche in Google Scholar
18. Pascual, M. E.; Carretero, M. E.; Slowing, K. V.; Villar, A. Simplified Screening by TLC of Plant Drugs. Pharm. Biol. 2002, 40 (2), 139–143; https://doi.org/10.1076/phbi.40.2.139.5849.Suche in Google Scholar
19. Gafner, S.; Bergeron, C.; Batcha, L. L.; Angerhofer, C. K.; Sudberg, S.; Sudberg, É. M.; Guinaudeau, H.; Gauthier, R. Analysis of Scutellaria lateriflora and its Adulterants Teucrium canadense and Teucrium chamaedrys by LC–UV/MS, TLC, and Digital Photomicroscopy. J. AOAC Int. 2003, 86 (3), 453–460; https://doi.org/10.1093/jaoac/86.3.453.Suche in Google Scholar
20. ASTM International. Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM G1-03.02: West Conshohocken, PA, 2017.Suche in Google Scholar
21. Bouraoui, M. M.; Chettouh, S.; Chouchane, T.; Khellaf, N. Inhibition Efficiency of Cinnamon Oil as a Green Corrosion Inhibitor. J. Bio- Tribo-Corros. 2019, 5 (28), s40735-019-0221-0. https://doi.org/10.1007/s40735-019-0221-0.Suche in Google Scholar
22. Liu, Z.; Jackson, T. Understanding Thermal Stability and Inhibition Effectiveness of Corrosion Inhibitors at High Temperatures. In NACE International. NACE-2016- 7535, Paper presented at the CORROSION 2016; Vancouver: British Columbia, Canada, 2016. https://onepetro.org/NACECORR/proceedings-abstract/CORR16/All-CORR16/123670 (accessed 10 15, 2024).Suche in Google Scholar
23. Kokalj, A. On the Use of the Langmuir and Other Adsorption Isotherms in Corrosion Inhibition. Corros. Sci. 2023, 217, 111112. https://doi.org/10.1016/j.corsci.2023.111112.Suche in Google Scholar
24. Olasehinde, E. F.; Adesina, A. S.; Fehintola, E. O.; Badmus, B. M.; Aderibigbe, A. D. Corrosion Inhibition Behaviour for Mild Steel by Extracts of Musa Sapientum Peels in HCl Solution: Kinetics and Thermodynamics Study. IOSR J. Appl. Chem. 2012, 2 (6), 15–23. https://doi.org/10.9790/5736-0261523.Suche in Google Scholar
25. Šařec, P.; Šařec, O.; Prošek, V.; Čížková, K. Laser Profilometer Testing by Laboratory Measurements. Res. Agric. Eng. 2007, 53 (1), 1–7. https://doi.org/10.17221/2134-RAE.Suche in Google Scholar
26. Benelli, G.; Pavela, R.; Cianfaglione, K.; Sender, J.; Danuta, U.; Maślanko, W.; Canale, A.; Barboni, L.; Petrelli, R.; Zeppa, L.; Aguzzi, C.; Maggi, F. Ascaridole-Rich Essential Oil from Marsh Rosemary (Ledum palustre) Growing in Poland Exerts Insecticidal Activity on Mosquitoes, Moths and Flies Without Serious Effects on Non-target Organisms and Human Cells. Food Chem. Toxicol. 2020, 138, 111184. https://doi.org/10.1016/j.fct.2020.111184.Suche in Google Scholar PubMed
27. Thacker, H.; Ram, V. Green Corrosion Inhibitors Derived from Plant Extracts and Drugs for Mild Steel in Acid Media: A Review. Results Surf. Interfaces 2024, 18, 100364. https://doi.org/10.1016/j.rsurfi.2024.100364.Suche in Google Scholar
28. Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2nd ed.; Springer-Verlag: Berlin, 1996.10.1007/978-3-642-00574-9Suche in Google Scholar
29. Vukics, V.; Guttman, A. Structural Characterization of Flavonoid Glycosides by Multi‐Stage Mass Spectrometry. Mass Spectrom. Rev. 2008, 29 (1), 1–16. https://doi.org/10.1002/mas.20212.Suche in Google Scholar PubMed
30. Leong, C. N. A.; Tako, M.; Hanashiro, I.; Tamaki, H. Antioxidant Flavonoid Glycosides from the Leaves of Ficus pumila L. Food Chem. 2008, 109 (2), 415–420. https://doi.org/10.1016/j.foodchem.2007.12.069.Suche in Google Scholar PubMed
31. Kinghorn, A. D. Plant Drug Analysis. A Thin Layer Chromatography Atlas. J. Nat. Prod. 1997, 60 (4), 428. https://doi.org/10.1021/np960627o.Suche in Google Scholar
32. Verma, D. K.; Kaya, S.; Ech-Chihbi, E.; El-Hajjaji, F.; Phukan, M. M.; Alnashiri, H. M. Investigations on Some Coumarin-Based Corrosion Inhibitors for Mild Steel in Aqueous Acidic Medium: Electrochemical, Surface Morphological, Density Functional Theory, and Monte Carlo Simulation Approach. J. Mol. Liq. 2021, 329, 115531. https://doi.org/10.1016/j.molliq.2021.115531.Suche in Google Scholar
33. Munteanu, I. G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22 (7), 3380. https://doi.org/10.3390/ijms22073380.Suche in Google Scholar PubMed PubMed Central
34. Pilaquinga, F.; Morey, J.; Fernandez, L.; Espinoza-Montero, P.; Moncada-Basualto, M.; Pozo-Martinez, J.; Olea-Azar, C.; Bosch, R.; Meneses, L.; Debut, A.; Piña, M. d. l. N. Determination of Antioxidant Activity by Oxygen Radical Absorbance Capacity (ORAC-FL), Cellular Antioxidant Activity (CAA), Electrochemical and Microbiological Analyses of Silver Nanoparticles Using the Aqueous Leaf Extract of Solanum mammosum L. Int. J. Nanomed. 2021, 16, 5879–5894. https://doi.org/10.2147/ijn.s302935.Suche in Google Scholar PubMed PubMed Central
35. Khadom, A. A. Effect of Temperature on Corrosion Inhibition of copper- Nickel Alloy by Tetraethylenepentamine Under Flow Conditions. J. Chil. Chem. Soc. 2014, 59 (3), 2545–2549. https://doi.org/10.4067/s0717-97072014000300004.Suche in Google Scholar
36. Cottis, R.; Turgoose, S. Electrochemical Impedance and Noise. Corrosion Testing Made Easy, (Syrett, B.C, Series Editor); NACE International: Houston, TX, USA, 1999. Available from: http://ci.nii.ac.jp/ncid/BA6117916X.Suche in Google Scholar
37. Jović, V. Calculation of a Pure double-layer Capacitance from a Constant Phase Element in the Impedance Measurements. Zastita Materijala 2022, 63 (1), 50–57. https://doi.org/10.5937/zasmat2201050j.Suche in Google Scholar
38. Rahall, H. T.; Abdel-Gaber, A. M.; El-Rifai, M. S.; El-Housseiny, S. The Potential of Natural Leaf Extracts as Green Inhibitors for Mild Steel Corrosion in Hydrochloric Acid Solutions. Mor. J. Chem. 2024, 12 (8), 1554–1574. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i4.49691.Suche in Google Scholar
39. Fernandes, C. M.; Alvarez, L. X.; dos Santos, N. E.; Maldonado Barrios, A. C.; Ponzio, E. A. Green Synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its Application as Corrosion Inhibitor for Mild Steel in Acidic Medium and New Approach of Classical Electrochemical Analyses. Corros. Sci. 2019, 149, 185–194. https://doi.org/10.1016/j.corsci.2019.01.019.Suche in Google Scholar
40. Abdel-Gaber, A. M.; Rahal, H. T.; El-Rifai, M. S. Green Approach Towards Corrosion Inhibition in Hydrochloric Acid Solutions. Biointerface Res. Appl. Chem. 2021, 11 (6), 14185–14195. https://doi.org/10.33263/BRIAC116.1418514195.Suche in Google Scholar
41. Waheed, A.; Baig, N.; Ullah, N.; Falath, W. Removal of Hazardous Dyes, Toxic Metal Ions and Organic Pollutants from Wastewater by Using Porous hyper-cross-linked Polymeric Materials: A Review of Recent Advances. J. Environ. Manag. 2021, 287, 112360. https://doi.org/10.1016/j.jenvman.2021.112360.Suche in Google Scholar PubMed
42. Pourhakkak, P.; Taghizadeh, M.; Taghizadeh, A.; Ghaedi, M. Chapter 2 – Adsorbent. Interface Sci. Technol. 2021, 33, 71–210. https://doi.org/10.1016/b978-0-12-818805-7.00009-6.Suche in Google Scholar
43. Ituen, E.; Akaranta, O.; James, A. Evaluation of Performance of Corrosion Inhibitors Using Adsorption Isotherm Models: An Overview. Chem. Sci. Int. J. 2017, 18 (1), 1–34. https://doi.org/10.9734/csji/2017/28976.Suche in Google Scholar
44. Abdul Rahiman, A. F. S.; Sethumanickam, S. Corrosion Inhibition, Adsorption and Thermodynamic Properties of Poly (Vinyl alcohol-cysteine) in Molar HCl. Arab. J. Chem. 2017, 10 (2), S3358–S3366. https://doi.org/10.1016/j.arabjc.2014.01.016.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2025-0523).
© 2025 IUPAC & De Gruyter