Bioactive compounds profile and extraction yields in coffee (Coffea arabica L.) by-products: a comparative analysis using ethanol, methanol and acetone
-
Milena Jiménez-Gutiérrez
, Sebastián Camacho-Marín
, Andrea Irías-Mata
und Patricia Esquivel
Abstract
Coffee beverages are consumed worldwide and produce considerable quantities of by-products from industrial processing every year. The present study identified 20 bioactive compounds in fresh coffee (Coffea arabica L.) husk and mucilage extracts from industrial processing. Ultra-high performance liquid chromatography coupled with diode array detection and triple quadrupole mass spectrometer (UHPLC-DAD-TQ/MS) was used for the profile of phytochemicals. Using ethanol (EtOH) as a green solvent, the extraction efficiency was compared with acetone and methanol (MeOH). Higher concentrations of Hydroxybenzoic Compounds (HBC) were found in husk than in mucilage and can be efficiently extracted with EtOH at 70, 80 and 90 %, with no significant differences with MeOH and acetone. Vanillic acid can be efficiently extracted from husk when 80 and 90 % EtOH is used. Rutin, an important non-anthocyanin Flavonoid Compound (FC) due to its health benefits, can be extracted at all concentrations of EtOH with equal results compared to acetone and MeOH. Ethanol seems to be a promissory ¨green¨ solvent for extracting phenolic compounds, achieving similar extraction yields when compared to acetone and MeOH. The coffee husk and mucilage extracts could be used in the food, pharmaceutical and other industries.
Funding source: Promotora Costarricense de Innovación e Investigación (PII) del Ministerio de Ciencia, Innovación, Tecnología y Telecomunicaciones (MICITT)
Award Identifier / Grant number: Nr. FI-037B-19
Acknowledgments
The author Milena Jiménez-Gutiérrez is highly thankful to the assistants Natalia Arauz, Samantha Arguedas, Katherine Fallas, Leidy Chacón and Cristian Porras for their support in the project.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: PE and AIM designed research and supervision. MJG, SCM and AMG conducted research. MJG, AIM, SCM, MV and PE analyzed data. MJG, AIM, MV and PE writing. MJG, SCM, AMG, AIM, MV and PE review & editing. All the authors read and approved the final manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: The authors did not use Large Language Models, AI and Machine Learning Tools to prepare this manuscript.
-
Conflict of interest: The authors declare no conflict of interests.
-
Research funding: This research was funded by Promotora Costarricense de Innovación e Investigación (PII) del Ministerio de Ciencia, Innovación, Tecnología y Telecomunicaciones (MICITT) by means of the project titled ¨Valorización de los desechos del procesamiento del café para el control de hongos en granos y semillas¨, Nr. FI-037B-19 and with support of the Centro para Investigaciones en Granos y Semillas (CIGRAS) under Project number 734-C0527.
-
Data availability: Data will be provide if they are requested.
References
1. Santos, É. M. D.; Macedo, L. M. D.; Tundisi, L. L.; Ataide, J. A.; Camargo, G. A.; Alves, R. C.; Oliveira, M. B. P. P.; Mazzola, P. G. Coffee By-Products in Topical Formulations: A Review. Trends Food Sci. Technol. 2021, 111, 280–291. https://doi.org/10.1016/j.tifs.2021.02.064.Suche in Google Scholar
2. Esquivel, P.; Jiménez, V. M. Functional Properties of Coffee and Coffee By-Products. Food Res. Int. 2012, 46 (2), 488–495. https://doi.org/10.1016/j.foodres.2011.05.028.Suche in Google Scholar
3. San Martin Ruiz, M.; Reiser, M.; Kranert, M. Enhanced Composting as a Way to a Climate-Friendly Management of Coffee By-Products. Environ. Sci. Pollut. Res. 2020, 27 (19), 24312–24319. https://doi.org/10.1007/s11356-020-08742-z.Suche in Google Scholar PubMed PubMed Central
4. Esquivel, P.; Viñas, M.; Steingass, C. B.; Gruschwitz, M.; Guevara, E.; Carle, R.; Schweiggert, R. M.; Jiménez, V. M. Coffee (Coffea Arabica L.) By-Products as a Source of Carotenoids and Phenolic Compounds – Evaluation of Varieties with Different Peel Color. Front. Sustain. Food Syst. 2020, 4, 590597. https://doi.org/10.3389/fsufs.2020.590597.Suche in Google Scholar
5. Nanda, B.; Sailaja, M.; Mohapatra, P.; Pradhan, R. K.; Nanda, B. B. Green Solvents: A Suitable Alternative for Sustainable Chemistry. Mater. Today Proc. 2021, 47, 1234–1240. https://doi.org/10.1016/j.matpr.2021.06.458.Suche in Google Scholar
6. Welton, T. Solvents and Sustainable Chemistry. Proc. R. Soc. Math. Phys. Eng. Sci. 2015, 471 (2183), 20150502. https://doi.org/10.1098/rspa.2015.0502.Suche in Google Scholar PubMed PubMed Central
7. Hu, S.; Gil-Ramírez, A.; Martín-Trueba, M.; Benítez, V.; Aguilera, Y.; Martín-Cabrejas, M. A. Valorization of Coffee Pulp as Bioactive Food Ingredient by Sustainable Extraction Methodologies. Curr. Res. Food Sci. 2023, 6, 100475. https://doi.org/10.1016/j.crfs.2023.100475.Suche in Google Scholar PubMed PubMed Central
8. CISCO. Safety Data Sheet: Methanol, 2015.Suche in Google Scholar
9. Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila Aromatica. J. Food Drug Anal. 2014, 22 (3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001.Suche in Google Scholar PubMed PubMed Central
10. ThermoFischer Scientific. Safety Data Sheet Acetone, 2009. https://www.fishersci.com/store/msds?partNumber=AA22928M6&productDescription=ACETONE+HPLC+GRD+99.5%2B%25+4X4L&vendorId=VN00024248&countryCode=US&language=en (accessed 2025-06-13).Suche in Google Scholar
11. Boeing, J. S.; Barizão, É. O.; E Silva, B. C.; Montanher, P. F.; De Cinque Almeida, V.; Visentainer, J. V. Evaluation of Solvent Effect on the Extraction of Phenolic Compounds and Antioxidant Capacities from the Berries: Application of Principal Component Analysis. Chem. Cent. J. 2014, 8 (1), 48. https://doi.org/10.1186/s13065-014-0048-1.Suche in Google Scholar PubMed PubMed Central
12. Chaves, J. O.; De Souza, M. C.; Da Silva, L. C.; Lachos-Perez, D.; Torres-Mayanga, P. C.; Machado, A. P. D. F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A. V.; Barbero, G. F.; Rostagno, M. A. Extraction of Flavonoids from Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887; https://doi.org/10.3389/fchem.2020.507887.Suche in Google Scholar PubMed PubMed Central
13. Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol Screening of Pomace from Red and White Grape Varieties (Vitis Vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52 (14), 4360–4367. https://doi.org/10.1021/jf049613b.Suche in Google Scholar PubMed
14. Lux, P. E.; Freiling, M.; Stuetz, W.; Von Tucher, S.; Carle, R.; Steingass, C. B.; Frank, J. (Poly)Phenols, Carotenoids, and Tocochromanols in Corn (Zea Mays L.) Kernels as Affected by Phosphate Fertilization and Sowing Time. J. Agric. Food Chem. 2020, 68 (2), 612–622. https://doi.org/10.1021/acs.jafc.9b07009.Suche in Google Scholar PubMed
15. Fratianni, F.; Cardinale, F.; Cozzolino, A.; Granese, T.; Albanese, D.; Di Matteo, M.; Zaccardelli, M.; Coppola, R.; Nazzaro, F. Polyphenol Composition and Antioxidant Activity of Different Grass Pea (Lathyrus Sativus), Lentils (Lens Culinaris), and Chickpea (Cicer Arietinum) Ecotypes of the Campania Region (Southern Italy). J. Funct. Foods 2014, 7, 551–557. https://doi.org/10.1016/j.jff.2013.12.030.Suche in Google Scholar
16. Peres, R.; Tonin, F.; Tavares, M.; Rodriguez-Amaya, D. HPLC-DAD-ESI/MS Identification and Quantification of Phenolic Compounds in Ilex paraguariensis Beverages and On-Line Evaluation of Individual Antioxidant Activity. Molecules 2013, 18 (4), 3859–3871. https://doi.org/10.3390/molecules18043859.Suche in Google Scholar PubMed PubMed Central
17. RStudio Team. RStudio: Integrated Development for R. RStudio, 2023.Suche in Google Scholar
18. Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Benítez, V.; Bartolomé, B.; Aguilera, Y.; Martín-Cabrejas, M. A. Revalorization of Coffee Husk: Modeling and Optimizing the Green Sustainable Extraction of Phenolic Compounds. Foods 2021, 10 (3), 653. https://doi.org/10.3390/foods10030653.Suche in Google Scholar PubMed PubMed Central
19. Zhang, Y.; Xiong, H.; Xu, X.; Xue, X.; Liu, M.; Xu, S.; Liu, H.; Gao, Y.; Zhang, H.; Li, X. Compounds Identification in Semen Cuscutae by Ultra-high-performance Liquid Chromatography (UPLCs) Coupled to Electrospray Ionization Mass Spectrometry. Molecules 2018, 23 (5), 1199. https://doi.org/10.3390/molecules23051199.Suche in Google Scholar PubMed PubMed Central
20. Clifford, M. N.; Ramirez-Martinez, J. R. Phenols and Caffeine in Wet-Processed Coffee Beans and Coffee Pulp. Food Chem. 1991, 40 (1), 35–42. https://doi.org/10.1016/0308-8146(91)90017-I.Suche in Google Scholar
21. Semwal, R.; Joshi, S. K.; Semwal, R. B.; Semwal, D. K. Health Benefits and Limitations of Rutin - A Natural Flavonoid with High Nutraceutical Value. Phytochem. Lett. 2021, 46, 119–128. https://doi.org/10.1016/j.phytol.2021.10.006.Suche in Google Scholar
22. Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and its Anti-allergic Immune Response. Molecules 2016, 21 (5), 623. https://doi.org/10.3390/molecules21050623.Suche in Google Scholar PubMed PubMed Central
23. Mustafa, A. M.; Abouelenein, D.; Angeloni, S.; Maggi, F.; Navarini, L.; Sagratini, G.; Santanatoglia, A.; Torregiani, E.; Vittori, S.; Caprioli, G. A New HPLC-MS/MS Method for the Simultaneous Determination of Quercetin and its Derivatives in Green Coffee Beans. Foods 2022, 11 (19), 3033. https://doi.org/10.3390/foods11193033.Suche in Google Scholar PubMed PubMed Central
24. Trevisan, M. T. S.; Farias de Almeida, R.; Soto, G.; De Melo Virginio Filho, E.; Ulrich, C. M.; Owen, R. W. Quantitation by HPLC-UV of Mangiferin and Isomangiferin in Coffee (Coffea Arabica) Leaves from Brazil and Costa Rica after Solvent Extraction and Infusion. Food Anal. Methods 2016, 9 (9), 2649–2655. https://doi.org/10.1007/s12161-016-0457-y.Suche in Google Scholar
25. Telang, M.; Dhulap, S.; Mandhare, A.; Hirwani, R. Therapeutic and Cosmetic Applications of Mangiferin: A Patent Review. Expert Opin. Ther. Pat. 2013, 23 (12), 1561–1580. https://doi.org/10.1517/13543776.2013.836182.Suche in Google Scholar PubMed
26. Campa, C.; Mondolot, L.; Rakotondravao, A.; Bidel, L. P. R.; Gargadennec, A.; Couturon, E.; La Fisca, P.; Rakotomalala, J.-J.; Jay-Allemand, C.; Davis, A. P. A Survey of Mangiferin and Hydroxycinnamic Acid Ester Accumulation in Coffee (Coffea) Leaves: Biological Implications and Uses. Ann. Bot. 2012, 110 (3), 595–613. https://doi.org/10.1093/aob/mcs119.Suche in Google Scholar PubMed PubMed Central
27. European Food Safety Authority (EFSA). Technical Report on the Notification of Infusion from Coffee Leaves (Coffea Arabica L. and/or Coffea Canephora Pierre Ex A. Froehner) as a Traditional Food from a Third Country Pursuant to Article 14 of Regulation (EU) 2015/2283. EFSA Support. Publ. 2020, 17 (2). https://doi.org/10.2903/sp.efsa.2020.EN-1783.Suche in Google Scholar
28. Lozada-Ramírez, J. D.; Guerrero-Moras, M. C.; González-Peña, M. A.; Silva-Pereira, T. S.; Anaya De Parrodi, C.; Ortega-Regules, A. E. Stabilization of Anthocyanins from Coffee (Coffea Arabica L.) Husks and In Vivo Evaluation of Their Antioxidant Activity. Molecules 2023, 28 (3), 1353. https://doi.org/10.3390/molecules28031353.Suche in Google Scholar PubMed PubMed Central
29. Chávez-González, M. L., Juan Buenrostro-Figueroa, J., Aguilar, C. N., Eds. Handbook of Research on Food Science and Technology: Food Technology and Chemistry, 1st ed.; Apple Academic Press: New York, 2019.10.1201/9780429487859Suche in Google Scholar
30. Chaves-Ulate, C.; Rodríguez-Sánchez, C.; Arias-Echandi, M. L.; Esquivel, P. Antimicrobial Activities of Phenolic Extracts of Coffee Mucilage. NFS J 2023, 31, 50–56. https://doi.org/10.1016/j.nfs.2023.03.005.Suche in Google Scholar
31. Delgado, S. R.; Arbelaez, A. F. A.; Rojano, B. Antioxidant Capacity, Bioactive Compounds in Coffee Pulp and Implementation in the Production of Infusions [Pdf]. Acta Sci. Pol. Technol. Aliment. 2019, 18 (3), 235–248. https://doi.org/10.17306/J.AFS.2019.0663.Suche in Google Scholar
32. Rodrigues Da Silva, M.; Sanchez Bragagnolo, F.; Lajarim Carneiro, R.; De Oliveira Carvalho Pereira, I.; Aquino Ribeiro, J. A.; Martins Rodrigues, C.; Jelley, R. E.; Fedrizzi, B.; Soleo Funari, C. Metabolite Characterization of Fifteen By-Products of the Coffee Production Chain: From Farm to Factory. Food Chem. 2022, 369, 130753. https://doi.org/10.1016/j.foodchem.2021.130753.Suche in Google Scholar PubMed
33. Salih, A. M.; Al-Qurainy, F.; Nadeem, M.; Tarroum, M.; Khan, S.; Shaikhaldein, H. O.; Al-Hashimi, A.; Alfagham, A.; Alkahtani, J. Optimization Method for Phenolic Compounds Extraction from Medicinal Plant (Juniperus Procera) and Phytochemicals Screening. Molecules 2021, 26 (24), 7454. https://doi.org/10.3390/molecules26247454.Suche in Google Scholar PubMed PubMed Central
34. Awad, A. M.; Kumar, P.; Ismail-Fitry, M. R.; Jusoh, S.; Ab Aziz, M. F.; Sazili, A. Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10 (9), 1465. https://doi.org/10.3390/antiox10091465.Suche in Google Scholar PubMed PubMed Central
35. Lim, K. J. A.; Cabajar, A. A.; Lobarbio, C. F. Y.; Taboada, E. B.; Lacks, D. J. Extraction of Bioactive Compounds from Mango (Mangifera Indica L. Var. Carabao) Seed Kernel with Ethanol–Water Binary Solvent Systems. J. Food Sci. Technol. 2019, 56 (5), 2536–2544. https://doi.org/10.1007/s13197-019-03732-7.Suche in Google Scholar PubMed PubMed Central
36. Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of Polyphenols Extraction from Dried Chokeberry Using Maceration as Traditional Technique. Food Chem. 2016, 194, 135–142. https://doi.org/10.1016/j.foodchem.2015.08.008.Suche in Google Scholar PubMed
37. PubChem. Acetone, Ethanol and Methanol. https://pubchem.ncbi.nlm.nih.gov/ (accessed 2023-10-16).Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2024-0318).
© 2025 IUPAC & De Gruyter