Synthesis and characterization of carbon quantum dots by microwave-assisted pyrolysis method from citrus juices and application in fluorescent bioimaging
Abstract
Carbon quantum dots (CQDs) are carbon-based nanoparticles which are less than 10 nm in size and are characterized by having modulable properties of luminescence and conductivity while presenting low toxicity, high water solubility, and biocompatibility, among others. These characteristics make them a good option for possible applications in the industrial, chemical, and biomedical fields. In this study, carbon quantum dots were synthesized using juices of seven different fruits as precursors. The syntheses are carried out by microwave-assisted hydrothermal reaction at 200 °C, and reaction mixtures are purified by column chromatography, followed by characterization via absorbance, fluorescence, infrared spectroscopy and transmission electron microscopy. Comparison of relative concentration of CQDs after 2, 4, and 6 h of reaction show that the best quantum yield obtained (6.3 %) corresponds to the mandarin lime after 6 h pyrolysis (with excitation at 410 nm and maximum emission at 505 nm) with a 4.1 ± 0.8 nm particle size determined via transmission electron microscopy. The synthesized CQDs are shown to be usable in fluorescence bioimaging of Escherichia coli when excited at 450–490 nm, while few or no significant emission is observed at other excitation wavelengths (365 nm and 546 nm), which establishes complementarity and non-interference with other dyes that are used in bioimaging.
Funding source: Office of Naval Research Global
Award Identifier / Grant number: N62909-20-1-2031
Funding source: Consejo Nacional de Rectores
Award Identifier / Grant number: Beca CeNAT 2022
Funding source: Vicerrectoría de Investigación, Universidad de Costa Rica
Award Identifier / Grant number: 540-C1-116
Acknowledgments
Access to lab equipment and instruments in Cenibiot/CENAT, Biodess/UCR, Labquimar/UNA, School of Chemistry/UCR and CICIMA/UCR is acknowledged. The support of LANOTEC Director Dr. José Vega-Baudrit was greatly appreciated. We thank Jessica Nock-Paniagua for fluorescence measurements and proof-reading, and Gerardo Rodriguez-Díaz for XRD measurements.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interests: The authors state no conflict of interest.
-
Research funding: This work was supported by Office of Naval Research Grant N62909-20-1-2031, University of Costa Rica Project 540-C1-116, and Centro Nacional de Alta Tecnología (CeNAT-CONARE) 2022–2023 scholarship.
-
Data availability: Data available within the article or its supplementary materials.
References
1. Jelinek, R. Carbon Quantum Dots. Carbon Quantum Dots; Springer International Publishing: Cham, 2017; pp. 29–46. https://bit.ly/3aSICZn.10.1007/978-3-319-43911-2_3Suche in Google Scholar
2. Kasprzyk, W.; Świergosz, T.; Bednarz, S.; Walas, K.; Bashmakova, N. V.; Bogdał, D. Luminescence Phenomena of Carbon Dots Derived from Citric Acid and Urea–A Molecular Insight. Nanoscale 2018, 10 (29), 13889–13894. https://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr03602k/unauth.10.1039/C8NR03602KSuche in Google Scholar PubMed
3. Luo, P. G.; Sahu, S.; Yang, S.-T.; Sonkar, S. K.; Wang, J.; Wang, H.; LeCroy, G. E.; Cao, L.; Sun, Y.-P. Carbon “Quantum” Dots for Optical Bioimaging. J. Mater. Chem. B 2013, 1 (16), 2116–2127. https://doi.org/10.1039/C3TB00018D.Suche in Google Scholar
4. Liu, Y.; Jiang, L.; Li, B.; Fan, X.; Wang, W.; Liu, P.; Xu, S.; Luo, X. Nitrogen Doped Carbon Dots: Mechanism Investigation and Their Application for Label-free CA125 Analysis. J. Mater. Chem. B 2019, 7 (19), 3053–3058. https://doi.org/10.1039/C9TB00021F.Suche in Google Scholar
5. Molaei, M. J. The Optical Properties and Solar Energy Conversion Applications of Carbon Quantum Dots: a Review. Sol. Energy 2020, 196, 549–566. https://bit.ly/3w309WF.10.1016/j.solener.2019.12.036Suche in Google Scholar
6. Yuan, T.; Meng, T.; He, P.; Shi, Y.; Li, Y.; Li, X.; Yang, S.; Fan, L. Carbon Quantum Dots: an Emerging Material for Optoelectronic Applications. J. Mater. Chem. C 2019, 7 (23), 6820–6835. https://rsc.li/2UfI9eF.10.1039/C9TC01730ESuche in Google Scholar
7. Ogi, T.; Iwasaki, H.; Aishima, K.; Iskandar, F.; Wang, W. N.; Takimiya, K.; Okuyama, K. Transient Nature of Graphene Quantum Dot Formation via a Hydrothermal Reaction. RSC Adv. 2014, 4 (99), 55709–55715. https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra09159k/unauth.10.1039/C4RA09159KSuche in Google Scholar
8. Xu, Q.; Kuang, T.; Liu, Y.; Cai, L.; Peng, X.; Sreenivasan Sreeprasad, T.; Zhao, P.; Yu, Z.; Li, N. Heteroatom-Doped Carbon Dots: Synthesis, Characterization, Properties, Photoluminescence Mechanism and Biological Applications. J. Mater. Chem. B 2016, 4 (45), 7204–7219. https://doi.org/10.1039/C6TB02131J.Suche in Google Scholar
9. Xu, M.; He, G.; Li, Z.; He, F.; Gao, F.; Su, Y.; Zhang, Y.; Zhang, L. A Green Heterogeneous Synthesis of N-doped Carbon Dots and Their Photoluminescence Applications in Solid and Aqueous States. Nanoscale 2014, 6 (17), 10307–10315. https://pubs.rsc.org/en/content/articlelanding/2014/nr/c4nr02792b/unauth.10.1039/C4NR02792BSuche in Google Scholar PubMed
10. Tadesse, A.; RamaDevi, D.; Hagos, M.; Battu, G. R.; Basavaiah, K. Facile Green Synthesis of Fluorescent Carbon Quantum Dots from Citrus Lemon Juice for Live Cell Imaging. Asian J. Nanosci. Mater 2018, 1 (1), 36–46. https://doi.org/10.26655/ajnanomat.2018.1.5.Suche in Google Scholar
11. Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S. Simple One-step Synthesis of Highly Luminescent Carbon Dots from Orange Juice: Application as Excellent bio-imaging Agents. Chem. Commun. 2012, 48 (70), 8835–8837. https://rsc.li/3w3VYKc.10.1039/c2cc33796gSuche in Google Scholar PubMed
12. Eskalen, H. Influence of Carbon Quantum Dots on Electro–Optical Performance of Nematic Liquid Crystal. Appl. Phys. A 2020, 126, 708. https://doi.org/10.1007/s00339-020-03906-7.Suche in Google Scholar
13. Varghese, M.; Bylappa, Y.; Nag, A.; Kumbhakar, P.; Balachandran, M. Citrus Medica-Derived Fluorescent Carbon Dots for the Imaging of Vigna Radiate Root Cells. J. Fluoresc. 2025, 35, 3519–3527. https://doi.org/10.1007/s10895-024-03790-x.Suche in Google Scholar PubMed
14. Aslan, M.; Eskalen, H. A Study of Carbon Nanodots (Carbon Quantum Dots) Synthesized from Tangerine Juice Using One-step Hydrothermal Method. Fullerenes, Nanotub. Carbon Nanostruct. 2021, 29 (12), 1026–1033. https://doi.org/10.1080/1536383X.2021.1926452.Suche in Google Scholar
15. Rivera-Álvarez, A.; Quesada-Ramírez, A.; Vega-Baudrit, J.; Paniagua, S. A. Síntesis, Propiedades Y Aplicaciones De Puntos Cuánticos a Base De Carbono. Afinidad. J. Chem. Eng. Theor. Appl. Chem. 2022, 79 (595), 188. https://raco.cat/index.php/afinidad/article/view/397321.Suche in Google Scholar
16. Essner, J. B.; Kist, J. A.; Polo-Parada, L.; Baker, G. A. Artifacts and Errors Associated with the Ubiquitous Presence of Fluorescent Impurities in Carbon Nanodots. Chem. Mater. 2018, 30 (6), 1878–1887. https://doi.org/10.1021/acs.chemmater.7b04446.Suche in Google Scholar
17. Schneider, J.; Reckmeier, C. J.; Xiong, Y.; von Seckendorff, M.; Susha, A. S.; Kasák, P.; Rogach, A. L. Molecular Fluorescence in Citric Acid-based Carbon Dots. J. Phys. Chem. C 2017, 121 (3), 2014–2022. https://pubs.acs.org/doi/full/10.1021/acs.jpcc.6b12519?casa_token=ureORC7a1eEAAAAA%3AIp7YV8Zjxl_tkoiHvR8sNGt0XmMkB2BGTzpxz0gwcWRYMXS-.10.1021/acs.jpcc.6b12519Suche in Google Scholar
18. USDA Chemistry and Technology of Citrus, Citrus Products, and Byproducts; Agriculture Handbook, 1956.Suche in Google Scholar
19. Strauss, V.; Wang, H.; Delacroix, S.; Ledendecker, M.; Wessig, P. Carbon Nanodots Revised: The Thermal Citric Acid/Urea Reaction. Chem. Sci. 2020, 11 (31), 8256–8266. https://doi.org/10.1039/D0SC01605E.Suche in Google Scholar PubMed PubMed Central
20. Mura, S.; Stagi, L.; Malfatti, L.; Carbonaro, C. M.; Ludmerczki, R.; Innocenzi, P. Modulating the Optical Properties of Citrazinic Acid Through the Monomer-to-Dimer Transformation. J. Phys. Chem. A 2019, 124 (1), 197–203. https://pubs.acs.org/doi/10.1021/acs.jpca.9b10884.10.1021/acs.jpca.9b10884Suche in Google Scholar PubMed
21. Velapoldi, R. A. Considerations on Organic Compounds in Solution and Inorganic Ions in Glasses as Fluorescent Standard Reference Materials. J. Res. Natl. Bur. Stand. Sec. A, Phys. Chem. 1972, 76 (6), 641. https://doi.org/10.6028/jres.076A.056.Suche in Google Scholar PubMed PubMed Central
22. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Relative Fluorescence Quantum Yields Using a Computer-Controlled Luminescence Spectrometer. Analyst 1983, 108 (1290), 1067–1071. https://doi.org/10.1039/AN9830801067.Suche in Google Scholar
23. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J. J.; Ajayan, P. M.; Song, L. Graphene Quantum Dots Derived from Carbon Fibers. Nano letters 2012, 12 (2), 844–849. https://pubs.acs.org/doi/10.1021/nl2038979.10.1021/nl2038979Suche in Google Scholar PubMed
24. Timón, V.; Maté, B.; Herrero, V. J.; Tanarro, I. Infrared Spectra of Amorphous and Crystalline Urea Ices. Phys. Chem. Chem. Phys. 2021, 23 (39), 22344–22351. https://doi.org/10.1039/D1CP03503G.Suche in Google Scholar
25. Debroy, A.; Yadav, M.; Dhawan, R.; Dey, S.; George, N. DNA Dyes: Toxicity, Remediation Strategies and Alternatives. Folia Microbiol. 2022, 67 (4), 555–571. https://doi.org/10.1007/s12223-022-00963-8.Suche in Google Scholar PubMed
26. Rocchi, A.; di Castro, M. T.; Prantera, G. Effects of DAPI on Human Leukocytes in Vitro. Cytogenet. Genome Res. 1979, 23 (4), 250–254. https://doi.org/10.1159/000131335.Suche in Google Scholar PubMed
27. Anand, A.; Huang, C. C.; Lai, J. Y.; Bano, D.; Pardede, H. I.; Hussain, A.; Unnikrishnan, B.; Saleem, S. Fluorescent Carbon Dots for Labeling of Bacteria: Mechanism and Prospects—A Review. Anal. Bioanal. Chem. 2024, 1–15. https://doi.org/10.1007/s00216-024-05300-1.Suche in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2025-0431).
© 2025 IUPAC & De Gruyter