Home (Poly)phenol-rich extracts from six tropical fruits: antifungal and antimycotoxin activity against Fusarium verticillioides
Article
Licensed
Unlicensed Requires Authentication

(Poly)phenol-rich extracts from six tropical fruits: antifungal and antimycotoxin activity against Fusarium verticillioides

  • Katherine Gómez-Pérez ORCID logo , Sharlyn Sánchez-Murillo ORCID logo , Cinthia Sandí-Bolaños ORCID logo , Maude Chegnimonhan ORCID logo , Víctor M. Jiménez ORCID logo , María Vinas ORCID logo and Andrea Irías-Mata ORCID logo EMAIL logo
Published/Copyright: May 22, 2025

Abstract

(Poly)phenol from tropical fruits have attracted attention for their antioxidant and antimicrobial properties, offering potential solutions to food safety risks posed by microorganisms and mycotoxins. Using a validated and streamlined ultra high-performance liquid chromatography coupled to diode array and tandem mass spectrometry with electrospray ionization (UHPLC-DAD-ESI-MS/MS) protocol, targeted (poly)phenol with antimicrobial and antimycotoxin potential were analyzed in six tropical fruits (Annona muricata, Anacardium occidentale, Byrsonima crassifolia, Elaeis guineensis, Hylocereus costaricensis, and Spondias purpurea). The (poly)phenol-rich extracts of the most promising ones according to their total (poly)phenol content, namely A. occidentale, B. crassifolia, and H. costaricensis, were further evaluated for their antifungal and antimycotoxin activities. Bioassays revealed antifungal activity against Fusarium verticillioides and inhibition of fumonisin B1 (FB1) accumulation. When applied to maize and rice grains, these extracts provided protection, although efficacy decreased over time (after 45 days), likely due to (poly)phenol degradation. The antifungal and antimycotoxin effects may be attributed to the combined action of multiple (poly)phenol, which are abundant in these fruits.


Corresponding author: Andrea Irías-Mata, Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, 11501-2060 San Pedro, Costa Rica, e-mail:
Permanent address: Maude Chegnimonhan, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université de Brest, EA3882 29280 Plouzané, France. Article note: A collection of invited papers based on presentations at the Costa Rica Chemistry Congress (CR 2024) held on 23–26 July 2024 in Heredia, Costa Rica.

Award Identifier / Grant number: Project 734-C1-453

Acknowledgments

The authors thank Amancio Alvarado (ASD, Costa Rica) and Marvin Araya (pitahaya farmer) for supply the materials of Elaeis guineensis and Hylocereus costaricensis, respectively, for this research.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Conceptualization, M.V. and A.I-M.; methodology, K.G-P, S.S-M, C. S-B, M.C, M.V. and A.I-M.; validation, K.G-P and A.I-M.; formal analysis, K.G-P, S.S-M, M.V, A.I-M.; investigation, K.G-P, S.S-M, C.S-B, M.C, M.V, A.I-M; resources, M.V.; data curation, K.G-P, S.S-M, M.V, A.I-M.; writing – original draft preparation, V.J, M.V, A.I-M.; writing – review and editing, V.J, M.V, A.I-M.; visualization, V.J, M.V, A.I-M.; supervision, V.J, M.V, A.I-M.; project administration, M.V.; funding acquisition, M.V. All authors have read and agreed to the published version of the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest. Neither the funders nor the sample suppliers had any role in the design of the study; in the collection, analysis, or interpretation of the data; in the writing of the manuscript; or in the decision to publish the results.

  6. Research funding: This research was funded by the Vicerrectoría de Investigación, Universidad de Costa Rica, grant for the project 734-C1-453.

  7. Data availability: The datasets of the current study are available from the corresponding author on reasonable request.

References

1. Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24 (13), 2452. https://doi.org/10.3390/molecules24132452.Search in Google Scholar PubMed PubMed Central

2. Tuladhar, P.; Sasidharan, S.; Saudagar, P. Role of Phenols and Polyphenols in Plant Defense Response to Biotic and Abiotic Stresses. In Biocontrol Agents and Secondary Metabolites; Jogaiah, S., Ed.; Woodhead Publishing: Cambridge, 2021; pp 419–441.10.1016/B978-0-12-822919-4.00017-XSearch in Google Scholar

3. Olszowy, M. What Is Responsible for Antioxidant Properties of Polyphenolic Compounds from Plants? Plant Physiol. Biochem. 2019, 144, 135–143. https://doi.org/10.1016/j.plaphy.2019.09.039.Search in Google Scholar PubMed

4. Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23 (2), 174–181. https://doi.org/10.1016/j.copbio.2011.08.007.Search in Google Scholar PubMed

5. Oulahal, N.; Degraeve, P. Phenolic-Rich Plant Extracts with Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front. Microbiol. 2022, 12, 753518. https://doi.org/10.3389/fmicb.2021.753518.Search in Google Scholar PubMed PubMed Central

6. Ajila, C. M.; Brar, S. K.; Verma, M.; Tyagi, R. D.; Godbout, S.; Valéro, J. R. Extraction and Analysis of Polyphenols: Recent Trends. Crit. Rev. Biotechnol. 2011, 31 (3), 227–249. https://doi.org/10.3109/07388551.2010.513677.Search in Google Scholar PubMed

7. Plaza, M.; Domínguez-Rodríguez, G.; Castro-Puyana, M.; Marina, M. L. 6-Polyphenols Analysis and Related Challenges. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C. M., Ed.; Woodhead Publishing: Cambridge, 2018; pp 177–232.10.1016/B978-0-12-813572-3.00006-3Search in Google Scholar

8. Pereira-Netto, A. B. Tropical Fruits as Natural, Exceptionally Rich, Sources of Bioactive Compounds. Int. J. Fruit Sci. 2018, 18 (3), 231–242. https://doi.org/10.1080/15538362.2018.1444532.Search in Google Scholar

9. Awuchi, C. G.; Ondari, E. N.; Nwozo, S.; Odongo, G. A.; Eseoghene, I. J.; Twinomuhwezi, H.; Ogbonna, C. U.; Upadhyay, A. K.; Adeleye, A. O.; Okpala, C. O. R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14 (3), 167. https://doi.org/10.3390/toxins14030167.Search in Google Scholar PubMed PubMed Central

10. Janik, E.; Niemcewicz, M.; Ceremuga, M.; Stela, M.; Saluk-Bijak, J.; Siadkowski, A.; Bijak, M. Molecular Aspects of Mycotoxins – A Serious Problem for Human Health. Int. J. Mol. Sci. 2020, 21 (21), 8187. https://doi.org/10.3390/ijms21218187.Search in Google Scholar PubMed PubMed Central

11. Pereira, C. S.; Cunha, S. C.; Fernandes, J. O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11 (5), 290. https://doi.org/10.3390/toxins11050290.Search in Google Scholar PubMed PubMed Central

12. Ismaiel, A. A.; Papenbrock, J.Mycotoxins: Producing Fungi and Mechanisms of Phytotoxicity. Agriculture 2015, 5 (3), 492–537. https://doi.org/10.3390/agriculture5030492.Search in Google Scholar

13. Li, T.; Su, X.; Qu, H.; Duan, X.; Jiang, Y. Biosynthesis, Regulation, and Biological Significance of Fumonisins in Fungi: Current Status and Prospects. Crit. Rev. Microbiol. 2022, 48 (4), 450–462. https://doi.org/10.1080/1040841X.2021.1979465.Search in Google Scholar PubMed

14. Farhadi, A.; Fakhri, Y.; Kachuei, R.; Vasseghian, Y.; Huseyn, E.; Mousavi Khaneghah, A. Prevalence and Concentration of Fumonisins in Cereal-Based Foods: A Global Systematic Review and Meta-Analysis Study. Environ. Sci. Pollut. Res. 2021, 28 (17), 20998–21008. https://doi.org/10.1007/s11356-021-12671-w.Search in Google Scholar PubMed

15. Eskola, M.; Kos, G.; Elliott, C. T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60 (16), 2773–2789. https://doi.org/10.1080/10408398.2019.1658570.Search in Google Scholar PubMed

16. Qi, X.; Chen, B.; Rao, J. Natural Compounds of Plant Origin in the Control of Fungi and Mycotoxins in Foods. Curr. Opin. Food Sci. 2023, 52, 101054. https://doi.org/10.1016/j.cofs.2023.101054.Search in Google Scholar

17. Rinaldo, D.; Mbéguié-A-Mbéguié, D.; Fils-Lycaon, B. Advances on Polyphenols and Their Metabolism in Sub-tropical and Tropical Fruits. Trends Food Sci. Technol. 2010, 21 (12), 599–606. https://doi.org/10.1016/j.tifs.2010.09.002.Search in Google Scholar

18. Aguilar-Hernández, G.; García-Magaña, M.; Vivar-Vera, M.; Sáyago-Ayerdi, S.; Sánchez-Burgos, J.; Morales-Castro, J.; Anaya-Esparza, L.; Montalvo González, E. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Annona muricata by-Products and Pulp. Molecules 2019, 24 (5), 904. https://doi.org/10.3390/molecules24050904.Search in Google Scholar PubMed PubMed Central

19. Jiménez, V. M.; Gruschwitz, M.; Schweiggert, R. M.; Carle, R.; Esquivel, P. Identification of Phenolic Compounds in Soursop (Annona muricata) Pulp by High-Performance Liquid Chromatography with Diode Array and Electrospray Ionization Mass Spectrometric Detection. Food Res. Int. 2014, 65, 42–46. https://doi.org/10.1016/j.foodres.2014.05.051.Search in Google Scholar

20. Ochoa-Jiménez, V. A.; Berumen-Varela, G.; Pérez-Ramírez, I. F.; Balois-Morales, R.; Rubio-Melgarejo, A.; Bautista-Rosales, P. U. Metabolomics Approach for Phenolic Compounds Profiling of Soursop (Annona muricata L.) Fruit during Postharvest Storage. Metabolomics 2024, 20 (2), 26. https://doi.org/10.1007/s11306-024-02093-3.Search in Google Scholar PubMed

21. Michodjehoun-Mestres, L.; Souquet, J.-M.; Fulcrand, H.; Bouchut, C.; Reynes, M.; Brillouet, J.-M. Monomeric Phenols of Cashew Apple (Anacardium occidentale L.). Food Chem. 2009, 112 (4), 851–857. https://doi.org/10.1016/j.foodchem.2008.06.056.Search in Google Scholar

22. Broinizi, P. R. B.; Andrade-Wartha, E. R. S. de; Silva, A. M. de O. e.; Novoa, A. J. V.; Torres, R. P.; Azeredo, H. M. C.; Alves, R. E.; Mancini-Filho, J. Avaliação Da Atividade Antioxidante Dos Compostos Fenólicos Naturalmente Presentes Em Subprodutos Do Pseudofruto de Caju (Anacardium occidentale L.). Ciênc. E Tecnol. Aliment. 2007, 27 (4), 902–908. https://doi.org/10.1590/S0101-20612007000400035.Search in Google Scholar

23. Marc, A.; Ange, K.; Achille, T. F. Phenolic Profile of Cashew Apple Juice (Anacardium occidentale L.) from Yamoussoukro and Korhogo (Côte d’Ivoire). J. Appl. Biosci. 2012, 49, 3331–3338.Search in Google Scholar

24. Queiroz, C.; da Silva, A. J. R.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L. Polyphenol Oxidase Activity, Phenolic Acid Composition and Browning in Cashew Apple (Anacardium occidentale, L.) after Processing. Food Chem. 2011, 125 (1), 128–132. https://doi.org/10.1016/j.foodchem.2010.08.048.Search in Google Scholar

25. Maldini, M.; Montoro, P.; Pizza, C. Phenolic Compounds from Byrsonima crassifolia L. Bark: Phytochemical Investigation and Quantitative Analysis by LC-ESI MS/MS. J. Pharm. Biomed. Anal. 2011, 56 (1), 1–6. https://doi.org/10.1016/j.jpba.2011.03.032.Search in Google Scholar PubMed

26. Cavalcante, M.; Oliveira, J.; Barreto, M.; Pinheiro, L.; Cantuária, P.; Borges, W.; da Silva, G.; de Souza, T. An HPLC Method to Determine Phenolic Compounds of Plant Extracts: Application to Byrsonima crassifolia and Senna alata Leaves. Pharmacogn. Res. 2022, 14 (4), 395–404. https://doi.org/10.5530/pres.14.4.58.Search in Google Scholar

27. Maisarah, M.; Noriham, A. Zainon. Quantification of Polyphenolic Acids and Antioxidant Capacity of Palm Puree from Different Tenera Breeds of Elaeis guineensis. Int. J. Biosci. Biochem. Bioinf. 2013, 3 (4), 349–353. https://doi.org/10.7763/IJBBB.2013.V3.229.Search in Google Scholar

28. Neo, Y.-P.; Ariffin, A.; Tan, C.-P.; Tan, Y.-A. Phenolic Acid Analysis and Antioxidant Activity Assessment of Oil Palm (E. guineensis) Fruit Extracts. Food Chem. 2010, 122 (1), 353–359. https://doi.org/10.1016/j.foodchem.2010.02.046.Search in Google Scholar

29. Esquivel, P.; Stintzing, F. C.; Carle, R. Phenolic Compound Profiles and Their Corresponding Antioxidant Capacity of Purple Pitaya (Hylocereus Sp.) Genotypes. Z. Für Naturforsch. C 2007, 62 (9–10), 636–644. https://doi.org/10.1515/znc-2007-9-1003.Search in Google Scholar PubMed

30. Sen, R.; Baruah, A. M. Phenolic Profile and Pigment Stability of Hylocereus Species Grown in North-East India. J. Food Compos. Anal. 2023, 116, 105078. https://doi.org/10.1016/j.jfca.2022.105078.Search in Google Scholar

31. Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V. M.; Gänzle, M. G.; Schieber, A. Characterization of Phenolic Compounds in Jocote (Spondias purpurea L.) Peels by Ultra High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Food Res. Int. 2012, 46 (2), 557–562. https://doi.org/10.1016/j.foodres.2011.04.003.Search in Google Scholar

32. Cangussu, L. B.; Costa, A. L. R.; Franca, A. S.; de Oliveira, L. S. Chemical Characterization and the Bioaccessibility of Bioactive Compounds from Seriguela (Spondias purpurea L.) Pulp and by-Products Flours. Bioact. Carbohydr. Diet. Fibre 2024, 31, 100404. https://doi.org/10.1016/j.bcdf.2024.100404.Search in Google Scholar

33. Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry, 2018. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed 2022-12-16).Search in Google Scholar

34. Lux, P. E.; Freiling, M.; Stuetz, W.; von Tucher, S.; Carle, R.; Steingass, C. B.; Frank, J. (Poly)Phenols, Carotenoids, and Tocochromanols in Corn (Zea mays L.) Kernels as Affected by Phosphate Fertilization and Sowing Time. J. Agric. Food Chem. 2020, 68 (2), 612–622. https://doi.org/10.1021/acs.jafc.9b07009.Search in Google Scholar PubMed

35. Fratianni, F.; Cardinale, F.; Cozzolino, A.; Granese, T.; Albanese, D.; Di Matteo, M.; Zaccardelli, M.; Coppola, R.; Nazzaro, F. Polyphenol Composition and Antioxidant Activity of Different Grass Pea (Lathyrus sativus), Lentils (Lens culinaris), and Chickpea (Cicer arietinum) Ecotypes of the Campania Region (Southern Italy). J. Funct. Foods 2014, 7, 551–557. https://doi.org/10.1016/j.jff.2013.12.030.Search in Google Scholar

36. Ahmed, O. S.; Tardif, C.; Rouger, C.; Atanasova, V.; Richard-Forget, F.; Waffo-Téguo, P. Naturally Occurring Phenolic Compounds as Promising Antimycotoxin Agents: Where Are We Now? Compr. Rev. Food Sci. Food Saf. 2022, 21 (2), 1161–1197. https://doi.org/10.1111/1541-4337.12891.Search in Google Scholar PubMed

37. Singleton, V. L.; Rossi, J. A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16 (3), 144–158. https://doi.org/10.5344/ajev.1965.16.3.144.Search in Google Scholar

38. Guido-Mora, A. Z.; Blanco-Meneses, M.; Granados-Montero, M. del M.; Viñas-Meneses, M. Identificación de Fusarium En Granos de Frijol Negro (Phaseolus vulgaris L.) En Costa Rica. Agron. Costarric. 2021, 45 (2), 57–69. https://doi.org/10.15517/rac.v45i2.47767.Search in Google Scholar

39. Myresiotis, C. K.; Testempasis, S.; Vryzas, Z.; Karaoglanidis, G. S.; Papadopoulou-Mourkidou, E. Determination of Mycotoxins in Pomegranate Fruits and Juices Using a QuEChERS-Based Method. Food Chem. 2015, 182, 81–88. https://doi.org/10.1016/j.foodchem.2015.02.141.Search in Google Scholar PubMed

40. Yogendrarajah, P.; Van Poucke, C.; De Meulenaer, B.; De Saeger, S. Development and Validation of a QuEChERS Based Liquid Chromatography Tandem Mass Spectrometry Method for the Determination of Multiple Mycotoxins in Spices. J. Chromatogr. A 2013, 1297, 1–11. https://doi.org/10.1016/j.chroma.2013.04.075.Search in Google Scholar PubMed

41. Acuña-Gutiérrez, C.; Schock, S.; Jiménez, V. M.; Müller, J. Detecting Fumonisin B1 in Black Beans (Phaseolus vulgaris L.) by Near-Infrared Spectroscopy (NIRS). Food Control 2021, 130, 108335. https://doi.org/10.1016/j.foodcont.2021.108335.Search in Google Scholar

42. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, 2024.Search in Google Scholar

43. Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25 (1), 1–18. https://doi.org/10.18637/jss.v025.i01.Search in Google Scholar

44. Kassambara, A. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 2016, 1.10.32614/CRAN.package.factoextraSearch in Google Scholar

45. Hassan, H.; Tahir, N. I.; Rozali, N. L.; Lau, B. Y. C.; Othman, A.; Weckwerth, W.; Ramli, U. S. Integrative Tissue-Resolved Proteomics and Metabolomics Analysis of Oil Palm (Elaeis guineensis Jacq.) Fruit Provides Insights into Stilbenoid Biosynthesis at the Interface of Primary and Secondary Metabolism. Biocatal. Agric. Biotechnol. 2024, 60, 103308. https://doi.org/10.1016/j.bcab.2024.103308.Search in Google Scholar

46. Tang, W.; Li, W.; Yang, Y.; Lin, X.; Wang, L.; Li, C.; Yang, R. Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya Fruit Peel from Two Red-Skinned Species (Hylocereus polyrhizus and Hylocereus undatus). Foods 2021, 10 (6), 1183. https://doi.org/10.3390/foods10061183.Search in Google Scholar PubMed PubMed Central

47. Tenore, G. C.; Novellino, E.; Basile, A. Nutraceutical Potential and Antioxidant Benefits of Red Pitaya (Hylocereus polyrhizus) Extracts. J. Funct. Foods 2012, 4 (1), 129–136. https://doi.org/10.1016/j.jff.2011.09.003.Search in Google Scholar

48. Cheynier, V.; Comte, G.; Davies, K. M.; Lattanzio, V.; Martens, S. Plant Phenolics: Recent Advances on Their Biosynthesis, Genetics, and Ecophysiology. Plant Phenolics Biosynth. Genet. Ecophysiol. 2013, 72, 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009.Search in Google Scholar PubMed

49. Cohen, S. D.; Kennedy, J. A. Plant Metabolism and the Environment: Implications for Managing Phenolics. Crit. Rev. Food Sci. Nutr. 2010, 50 (7), 620–643. https://doi.org/10.1080/10408390802603441.Search in Google Scholar PubMed

50. Yan, Y.; Pico, J.; Sun, B.; Pratap-Singh, A.; Gerbrandt, E.; Diego Castellarin, S. Phenolic Profiles and Their Responses to Pre- and Post-harvest Factors in Small Fruits: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63 (19), 3574–3601. https://doi.org/10.1080/10408398.2021.1990849.Search in Google Scholar PubMed

51. Nguyen, T. L. A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27 (8), 2494. https://doi.org/10.3390/molecules27082494.Search in Google Scholar PubMed PubMed Central

52. Zheng, Y.; Geng, Y.; Hou, W.; Li, Z.; Cheng, C.; Wang, X.; Yang, Y. Study on the Antifungal Activity of Gallic Acid and Its Azole Derivatives against Fusarium graminearum. Molecules 2024, 29 (9), 1996. https://doi.org/10.3390/molecules29091996.Search in Google Scholar PubMed PubMed Central

53. Khan, F.; Bamunuarachchi, N. I.; Tabassum, N.; Kim, Y.-M. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. J. Agric. Food Chem. 2021, 69 (10), 2979–3004. https://doi.org/10.1021/acs.jafc.0c07579.Search in Google Scholar PubMed

54. Martínez, G.; Regente, M.; Jacobi, S.; Del Rio, M.; Pinedo, M.; de la Canal, L. Chlorogenic Acid Is a Fungicide Active against Phytopathogenic Fungi. Pestic. Biochem. Physiol. 2017, 140, 30–35. https://doi.org/10.1016/j.pestbp.2017.05.012.Search in Google Scholar PubMed

55. Grintzalis, K.; Vernardis, S. I.; Klapa, M. I.; Georgiou, C. D. Role of Oxidative Stress in Sclerotial Differentiation and Aflatoxin B1 Biosynthesis in Aspergillus flavus. Appl. Environ. Microbiol. 2014, 80 (18), 5561–5571. https://doi.org/10.1128/AEM.01282-14.Search in Google Scholar PubMed PubMed Central

56. Ponts, N. Mycotoxins Are a Component of Fusarium graminearum Stress-Response System. Front. Microbiol. 2015, 6, 1234. https://doi.org/10.3389/fmicb.2015.01234.Search in Google Scholar PubMed PubMed Central

57. da Cruz Cabral, L.; Fernández Pinto, V.; Patriarca, A. Application of Plant Derived Compounds to Control Fungal Spoilage and Mycotoxin Production in Foods. Int. J. Food Microbiol. 2013, 166 (1), 1–14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026.Search in Google Scholar PubMed

58. Vinas, M.; Irías-Mata, A.; Chacón-Ordoñez, T.; Quesada-Grosso, R.; Arce-Villalobos, K.; Holst-Sanjuán, A.; Quesada-Román, I.; Sandi-Bolaños, C. Polyphenols from Common Beans (Phaseolus vulgaris L.) with Antimycotoxigenic Potential against Fumonisin B1. ACS Food Sci. Technol. 2025, 5 (2), 537–544. https://doi.org/10.1021/acsfoodscitech.4c00640.Search in Google Scholar

59. Mitra, S.; Tareq, A. M.; Das, R.; Emran, T. B.; Nainu, F.; Chakraborty, A. J.; Ahmad, I.; Tallei, T. E.; Idris, A. M.; Simal-Gandara, J. Polyphenols: A First Evidence in the Synergism and Bioactivities. Food Rev. Int. 2023, 39 (7), 4419–4441. https://doi.org/10.1080/87559129.2022.2026376.Search in Google Scholar

60. Friedman, M.; Jürgens, H. S. Effect of pH on the Stability of Plantphenolic Compounds. J. Agric. Food Chem. 2000, 48 (6), 2101–2110. https://doi.org/10.1021/jf990489j.Search in Google Scholar PubMed

61. Pasquet, P. L.; Julien-David, D.; Zhao, M.; Villain-Gambier, M.; Trébouet, D. Stability and Preservation of Phenolic Compounds and Related Antioxidant Capacity from Agro-Food Matrix: Effect of pH and Atmosphere. Food Biosci. 2024, 57, 103586. https://doi.org/10.1016/j.fbio.2024.103586.Search in Google Scholar

62. Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The Biological Activities, Chemical Stability, Metabolism and Delivery Systems of Quercetin: A Review. Trends Food Sci. Technol. 2016, 56, 21–38. https://doi.org/10.1016/j.tifs.2016.07.004.Search in Google Scholar

63. Cao, H.; Saroglu, O.; Karadag, A.; Diaconeasa, Z.; Zoccatelli, G.; Conte-Junior, C. A.; Gonzalez-Aguilar, G. A.; Ou, J.; Bai, W.; Zamarioli, C. M.; de Freitas, L. A. P.; Shpigelman, A.; Campelo, P. H.; Capanoglu, E.; Hii, C. L.; Jafari, S. M.; Qi, Y.; Liao, P.; Wang, M.; Zou, L.; Bourke, P.; Simal-Gandara, J.; Xiao, J. Available Technologies on Improving the Stability of Polyphenols in Food Processing. Food Front. 2021, 2 (2), 109–139. https://doi.org/10.1002/fft2.65.Search in Google Scholar

64. Milinčić, D. D.; Popović, D. A.; Lević, S. M.; Kostić, A. Ž.; Tešić, Ž. L.; Nedović, V. A.; Pešić, M. B. Application of Polyphenol-Loaded Nanoparticles in Food Industry. Nanomaterials 2019, 9 (11), 1629. https://doi.org/10.3390/nano9111629.Search in Google Scholar PubMed PubMed Central

65. Bisignano, C.; Filocamo, A.; Faulks, R. M.; Mandalari, G. In Vitro Antimicrobial Activity of Pistachio (Pistacia vera L.) Polyphenols. FEMS Microbiol. Lett. 2013, 341 (1), 62–67. https://doi.org/10.1111/1574-6968.12091.Search in Google Scholar PubMed

66. Zabka, M.; Pavela, R. Antifungal Efficacy of Some Natural Phenolic Compounds against Significant Pathogenic and Toxinogenic Filamentous Fungi. Chemosphere 2013, 93 (6), 1051–1056. https://doi.org/10.1016/j.chemosphere.2013.05.076.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0303).


Published Online: 2025-05-22

© 2025 IUPAC & De Gruyter

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0303/html
Scroll to top button