Startseite Producing an antibacterial acrylic polyurethane coating with acylated mimosa tannins
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Producing an antibacterial acrylic polyurethane coating with acylated mimosa tannins

  • Tuan Anh Nguyen , Thu Ha Hoang , Truc Vy Do , Thien Vuong Nguyen EMAIL logo , Thi My Hanh Trinh , Minh Nguyet Ha , Khanh Linh Duong , Le Trong Lu , Raa Khimi Shuib und Dai Lam Tran
Veröffentlicht/Copyright: 28. Mai 2024

Abstract

This work aims to fabricate the antibacterial coating with green biocide successfully. For this purpose, mimosa tannins were acylated with lauroyl chloride’s aid and pyridine’s support as a catalyst in the 1,4-dioxane, hexane and xylene solvents. Infrared analysis showed that mimosa tannins synthesized in the 1,4-dioxane were acylated better than in the other two solvents. FE-SEM analysis of the paint film showed that the acylated mimosa tannins at a content of 5 % dispersed quite well in the polymer matrix. The results of analyzing the mechanical properties of the paint film containing acylated mimosa tannins with contents ≤5 % show that the mechanical properties of the paint film are only slightly reduced compared to the mechanical properties of the pure coating, reaching the values: adhesion of size #1; abrasion resistance of 132.8 L/mil; impact strength of 170 kg cm and a relative hardness of 0.78. Antibacterial testing shows that the paint film containing 5 wt% acylated mimosa tannins have good antibacterial activity.


Corresponding author: Thien Vuong Nguyen, Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, e-mail:
Article note: A collection of invited papers on the advanced materials for environmental protection.

Funding source: Vietnam Academy of Science and Technology

Award Identifier / Grant number: Grant # NCXS 01.01/22-24

Funding source: Vietnam Academy of Science and Technology

Award Identifier / Grant number: Unassigned

Acknowledgment

The authors would like to thank Vietnam Academy of Science and Technology for funding under Grant # NCXS 01.01/22-24.

References

[1] P. Nguyen-Tri, T. A. Nguyen, T. H. Nguyen, P. Carriere. Micro and Nano Technologies. In Noble Metal-Metal Oxide Hybrid Nanoparticles, S. Mohapatra, T. A. Nguyen, P. Nguyen-Tri (Eds.), pp 141-155, Woodhead Publishing, United Kingdom (2019), ISBN 9780128141342.10.1016/B978-0-12-814134-2.00007-3Suche in Google Scholar

[2] T. N. L. Nguyen, T. V. Do, T. V. Nguyen, D. P. Hung, T. T. Van, V. P. Mac, A. H. Nguyen, T. Lu Le, T. A. Nguyen, T. K. A. Vo, D. L. Tran, D. A. Dinh. Prog. Org. Coat. 132, 15 (2019), https://doi.org/10.1016/j.porgcoat.2019.02.023.Suche in Google Scholar

[3] T. V. Nguyen, T. V. Do, M. Hung Ha, K. L. Hai, T. Tam Le, T. N. L. Nguyen, X. T. Dam, Q. T. Vu, D. A. Dinh, C. D. Tran, P. Nguyen-Tri. Prog. Org. Coat. 139, 105325 (2020), https://doi.org/10.1016/j.porgcoat.2019.105325.Suche in Google Scholar

[4] Y. Xia, L. Xu, J. Peng, J. Han, S. Guo, L. Zhang. Ceram. Int. 45(15), 18844 (2019), https://doi.org/10.1016/j.ceramint.2019.06.118.Suche in Google Scholar

[5] A. Karami. J. Iran. Chem. Soc. 7(S2), S154 (2010), https://doi.org/10.1007/BF03246194.Suche in Google Scholar

[6] J. Wang, R. Li, L. Zhang, Y. Xie, Z. Jiang, R. Xu. Russ. J. Inorg. Chem. 55(5), 692 (2010), https://doi.org/10.1134/S0036023610050074.Suche in Google Scholar

[7] Q. Ma, X. Liu, C. Xu, F. Xia, Y. Wang, D. Meng. J. Electron. Mater. 46, 347 (2017), https://doi.org/10.1007/s11664-016-4966-7.Suche in Google Scholar

[8] A. Phuruangrat, P. Dumrongrojthanath, O. Yayapao, J. Arin, S. Thongtem, T. Thongtem. Rare Met. 35(5), 390 (2016), https://doi.org/10.1007/s12598-015-0508-3.Suche in Google Scholar

[9] A. Priya, R. A. Senthil, A. Selvi, P. Arunachalam, C. K. Senthil Kumar, J. Madhavan, R. Boddula, R. Pothu, A. M. Al-Mayouf. Mater. Sci. Energy Technol. 3, 43 (2020), https://doi.org/10.1016/j.mset.2019.09.013.Suche in Google Scholar

[10] L. Tang, J. Wang, X. Liu, X. Shu, Z. Zhang, J. Wang. Renew. Energy 138, 474 (2019), https://doi.org/10.1016/j.renene.2019.01.113.Suche in Google Scholar

[11] A. Phuruangrat, O. Yayapao, S. Thongtem, T. Thongtem. Russ. J. Phys. Chem. A 90(5), 949 (2016), https://doi.org/10.1134/S003602441605006X.Suche in Google Scholar

[12] F. Sun, X. Qiao, F. Tan, W. Wang, X. Qiu. J. Mater. Sci. 47(20), 7262 (2012), https://doi.org/10.1007/s10853-012-6676-8.Suche in Google Scholar

[13] H. Liu, J. Feng, W. Jie. J. Mater. Sci. Mater. Electron. 28(22), 16585 (2017), https://doi.org/10.1007/s10854-017-7612-0.Suche in Google Scholar

[14] X. Tan, S. Zhou, H. Tao, W. Wang, Q. Wan, K. Zhang. J. Cent. South Univ. 26(7), 2011 (2019), https://doi.org/10.1007/s11771-019-4148-x.Suche in Google Scholar

[15] A. Saboor, S. M. Shah, H. Hussain. Mater. Sci. Semicond. Process. 93, 215 (2019), https://doi.org/10.1016/j.mssp.2019.01.009.Suche in Google Scholar

[16] G. O. Rabell, M. R. A. Cruz, I. Juárez-Ramírez. Mater. Sci. Semicond. Process. 134, 105985 (2021), https://doi.org/10.1016/j.mssp.2021.105985.Suche in Google Scholar

[17] Y. Xia, R. Gang, L. Xu, S. Huang, L. Zhou, J. Wang. Ceram. Int. 46(2), 1487 (2020), https://doi.org/10.1016/j.ceramint.2019.09.115.Suche in Google Scholar

[18] S. Seong, I. S. Park, Y. C. Jung, T. Lee, S. Y. Kim, J. S. Park. Mater. Des. 177, 107831 (2019), https://doi.org/10.1016/j.matdes.2019.107831.Suche in Google Scholar

[19] S. S. Naik, S. J. Lee, T. Begildayeva, Y. Yu, H. Lee, M. Y. Choi. Environ. Pollut. 266, 115247 (2020), https://doi.org/10.1016/j.envpol.2020.115247.Suche in Google Scholar PubMed

[20] V. Do Truc, T. V. Nguyen, T. V. Vu, T. A. Nguyen, T. D. Ngo, T. Tam Le, T. Lu Le, L. T. Pham, D. T. Lam. ChemistrySelect 8(6), e202204966 (2023), https://doi.org/10.1002/slct.202204966.Suche in Google Scholar

[21] T. V. Nguyen, V. Do Truc, T. A. Nguyen, T. L. Pham, D. L. Tran. J. Clust. Sci. 34, 3061 (2023), https://doi.org/10.1007/s10876-023-02448-1.Suche in Google Scholar

[22] T. V. Nguyen, V. Do Truc, L. P. Thi, D. L. Tran. Colloid Polym. Sci. 302, 225 (2024), https://doi.org/10.1007/s00396-023-05193-z.Suche in Google Scholar

[23] S. Oktay, A. Pizzi, N. Köken, B. Bengü. Int. J. Adhes. Adhes. 130, 103621 (2024), https://doi.org/10.1016/j.ijadhadh.2024.103621.Suche in Google Scholar

[24] S. Martinez. Mater. Chem. Phys. 77, 97 (2002), https://doi.org/10.1016/S0254-0584(01)00569-7.Suche in Google Scholar

[25] H. Gerengi, K. Schaefer, H. Ibrahim Sahin. J. Ind. Eng. Chem. 18(6), 2204 (2012), https://doi.org/10.1016/j.jiec.2012.06.019.Suche in Google Scholar

[26] Q. Huang, X. Liu, G. Zhao, T. Hu, Y. Wang. Anim. Nutr. 4(2), 137 (2018), https://doi.org/10.1016/j.livsci.2020.104228.Suche in Google Scholar

[27] L. Elizabeth Valencia-Gómez, S. A. Martel-Estrada, C. Vargas-Requena, J. L. Rivera-Armenta, I. Olivas-Armendáriz, C. Rodríguez-González. Int. J. Biol. Macromol. 93, 1217 (2016), https://doi.org/10.1016/j.ijbiomac.2016.09.083.Suche in Google Scholar PubMed

[28] A. Sharma, R. C. Flores-Vallejo, A. Cardoso-Taketa, M. L. Villarreal. J. Ethnopharmacol. 208(17), 264 (2017), https://doi.org/10.1016/j.jep.2016.04.045.Suche in Google Scholar PubMed

[29] P. Widsten, C. Heathcote, A. Kandelbauer, G. Guebitz, T. Kudanga, E. N. Prasetyo. Process Biochem. 45(7), 1072 (2010), https://doi.org/10.1016/j.procbio.2010.03.022.Suche in Google Scholar

[30] S. Arokiyaraj, N. Sripriya, R. Bhagya, B. Radhika, N. K. Udayaprakash. Asian Pac. J. Trop. Biomed. 2(2), s601 (2012), https://doi.org/10.1016/S2221-1691(12)60281-0.Suche in Google Scholar

[31] A. Arbenz, L. Avérous. Green Chem. 17, 2626 (2015), https://doi.org/10.1039/c5gc00282f.Suche in Google Scholar

[32] T. V. Nguyen, X. H. Le, P. H. Dao, C. Decker, T. P. Nguyen. Prog. Org. Coat. 124, 137 (2018), https://doi.org/10.1016/j.porgcoat.2018.08.013.Suche in Google Scholar

[33] D. G. Roux, E. Paulus. Biochem. J. 77, 315 (1960), https://doi.org/10.1042/bj0770315.Suche in Google Scholar PubMed PubMed Central

[34] C. Luo, W. Grigsby, N. Edmonds, A. Easteal, J. Al-Hakkak. J. Appl. Polym. Sci. 117(1), 352 (2010), https://doi.org/10.1002/app.31545.Suche in Google Scholar

[35] A. Nicollin, X. Zhou, A. Pizzi, W. Grigsby, K. Rode, L. Delmotte. Ind. Crops Prod. 49, 851 (2013), https://doi.org/10.1016/j.indcrop.2013.06.013.Suche in Google Scholar

[36] T. V. Nguyen, T. Vy Do, T. D. Ngo, T. A. Nguyen, L. T. Lu, Q. T. Vu, L. P. Thi, D. L. Tran. RSC Adv. 12(36), 23346 (2022), https://doi.org/10.1039/D2RA03546D.Suche in Google Scholar

[37] B. Kaczmarek. Materials 13(14), 3224 (2020), https://doi.org/10.3390/ma13143224.Suche in Google Scholar PubMed PubMed Central

[38] M. Vera, C. Silva, N. Li, Y. García, V. A. Jiménez, B. F. Urbano. J. Appl. Polym. Sci. 141, e55437 (2024), https://doi.org/10.1002/app.55437.Suche in Google Scholar

[39] S. R. Khan, S. M. Khan, R. U. Khan. Sustainability 15, 3884 (2023), https://doi.org/10.3390/su15053884.Suche in Google Scholar

Published Online: 2024-05-28
Published in Print: 2024-08-27

© 2024 IUPAC & De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Special issue on “Advanced materials for environmental protection and sustainability in Asean countries”
  5. Special topic papers
  6. Nanocomposite nanofibrous membranes of graphene and graphene oxide: water remediation potential
  7. Selection of graphene as a conductive additive for biomass-based activated carbon electrode in capacitive deionization: acid-treated as a practical approach to reduce graphene content
  8. Biochar-based catalysts: a potential disposal of plant biomass from phytoremediation
  9. Bio-based aerogel composites of coconut pith-derived carbon and chitosan for efficient anionic dye-polluted water treatment
  10. Study on synthesizing the complex of sorafenib with 2-hydroxypropyl-β-cyclodextrin to enhance the anticancer activity of the drug substance
  11. An antimicrobial acrylic polyurethane coating with TiO2-Ag hybrid nanoparticles
  12. Efficient synthesis of tricaproin: catalyst and reaction optimization
  13. Enhanced photocatalytic and antibacterial properties of silver–zirconia nanoparticles for environmental pollution treatment
  14. Preparation of sulfur nanoparticles in chitosan-copper complex and investigation of its nematicidal activity against Pratylenchus pratensis in vitro
  15. Fabrication of cathode electrodes based on activated carbon, reduced-graphene for hybrid capacitive deionization technology
  16. Biodegradable thermochromic polylactic acid (PLA) sensor
  17. Effect of ground tyre rubber content on self-healing properties of natural rubber composites
  18. Preparation of composite based on MXene-Ti3C2 and coconutshell-derived activated carbon for desalination of brackish water
  19. Producing an antibacterial acrylic polyurethane coating with acylated mimosa tannins
  20. Effect of multi-walled carbon nanotubes reinforcement on self-healing performance of natural rubber
  21. Mechanical properties of web kapok/fiberglass-epoxy hybrid composites for marine structures
  22. Investigation on recycling and reprocessing ability of self-healing natural rubber based on ionic crosslink network
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0018/html
Button zum nach oben scrollen