Producing an antibacterial acrylic polyurethane coating with acylated mimosa tannins
-
Tuan Anh Nguyen
, Thi My Hanh Trinh
Abstract
This work aims to fabricate the antibacterial coating with green biocide successfully. For this purpose, mimosa tannins were acylated with lauroyl chloride’s aid and pyridine’s support as a catalyst in the 1,4-dioxane, hexane and xylene solvents. Infrared analysis showed that mimosa tannins synthesized in the 1,4-dioxane were acylated better than in the other two solvents. FE-SEM analysis of the paint film showed that the acylated mimosa tannins at a content of 5 % dispersed quite well in the polymer matrix. The results of analyzing the mechanical properties of the paint film containing acylated mimosa tannins with contents ≤5 % show that the mechanical properties of the paint film are only slightly reduced compared to the mechanical properties of the pure coating, reaching the values: adhesion of size #1; abrasion resistance of 132.8 L/mil; impact strength of 170 kg cm and a relative hardness of 0.78. Antibacterial testing shows that the paint film containing 5 wt% acylated mimosa tannins have good antibacterial activity.
Funding source: Vietnam Academy of Science and Technology
Award Identifier / Grant number: Grant # NCXS 01.01/22-24
Funding source: Vietnam Academy of Science and Technology
Award Identifier / Grant number: Unassigned
Acknowledgment
The authors would like to thank Vietnam Academy of Science and Technology for funding under Grant # NCXS 01.01/22-24.
References
[1] P. Nguyen-Tri, T. A. Nguyen, T. H. Nguyen, P. Carriere. Micro and Nano Technologies. In Noble Metal-Metal Oxide Hybrid Nanoparticles, S. Mohapatra, T. A. Nguyen, P. Nguyen-Tri (Eds.), pp 141-155, Woodhead Publishing, United Kingdom (2019), ISBN 9780128141342.10.1016/B978-0-12-814134-2.00007-3Search in Google Scholar
[2] T. N. L. Nguyen, T. V. Do, T. V. Nguyen, D. P. Hung, T. T. Van, V. P. Mac, A. H. Nguyen, T. Lu Le, T. A. Nguyen, T. K. A. Vo, D. L. Tran, D. A. Dinh. Prog. Org. Coat. 132, 15 (2019), https://doi.org/10.1016/j.porgcoat.2019.02.023.Search in Google Scholar
[3] T. V. Nguyen, T. V. Do, M. Hung Ha, K. L. Hai, T. Tam Le, T. N. L. Nguyen, X. T. Dam, Q. T. Vu, D. A. Dinh, C. D. Tran, P. Nguyen-Tri. Prog. Org. Coat. 139, 105325 (2020), https://doi.org/10.1016/j.porgcoat.2019.105325.Search in Google Scholar
[4] Y. Xia, L. Xu, J. Peng, J. Han, S. Guo, L. Zhang. Ceram. Int. 45(15), 18844 (2019), https://doi.org/10.1016/j.ceramint.2019.06.118.Search in Google Scholar
[5] A. Karami. J. Iran. Chem. Soc. 7(S2), S154 (2010), https://doi.org/10.1007/BF03246194.Search in Google Scholar
[6] J. Wang, R. Li, L. Zhang, Y. Xie, Z. Jiang, R. Xu. Russ. J. Inorg. Chem. 55(5), 692 (2010), https://doi.org/10.1134/S0036023610050074.Search in Google Scholar
[7] Q. Ma, X. Liu, C. Xu, F. Xia, Y. Wang, D. Meng. J. Electron. Mater. 46, 347 (2017), https://doi.org/10.1007/s11664-016-4966-7.Search in Google Scholar
[8] A. Phuruangrat, P. Dumrongrojthanath, O. Yayapao, J. Arin, S. Thongtem, T. Thongtem. Rare Met. 35(5), 390 (2016), https://doi.org/10.1007/s12598-015-0508-3.Search in Google Scholar
[9] A. Priya, R. A. Senthil, A. Selvi, P. Arunachalam, C. K. Senthil Kumar, J. Madhavan, R. Boddula, R. Pothu, A. M. Al-Mayouf. Mater. Sci. Energy Technol. 3, 43 (2020), https://doi.org/10.1016/j.mset.2019.09.013.Search in Google Scholar
[10] L. Tang, J. Wang, X. Liu, X. Shu, Z. Zhang, J. Wang. Renew. Energy 138, 474 (2019), https://doi.org/10.1016/j.renene.2019.01.113.Search in Google Scholar
[11] A. Phuruangrat, O. Yayapao, S. Thongtem, T. Thongtem. Russ. J. Phys. Chem. A 90(5), 949 (2016), https://doi.org/10.1134/S003602441605006X.Search in Google Scholar
[12] F. Sun, X. Qiao, F. Tan, W. Wang, X. Qiu. J. Mater. Sci. 47(20), 7262 (2012), https://doi.org/10.1007/s10853-012-6676-8.Search in Google Scholar
[13] H. Liu, J. Feng, W. Jie. J. Mater. Sci. Mater. Electron. 28(22), 16585 (2017), https://doi.org/10.1007/s10854-017-7612-0.Search in Google Scholar
[14] X. Tan, S. Zhou, H. Tao, W. Wang, Q. Wan, K. Zhang. J. Cent. South Univ. 26(7), 2011 (2019), https://doi.org/10.1007/s11771-019-4148-x.Search in Google Scholar
[15] A. Saboor, S. M. Shah, H. Hussain. Mater. Sci. Semicond. Process. 93, 215 (2019), https://doi.org/10.1016/j.mssp.2019.01.009.Search in Google Scholar
[16] G. O. Rabell, M. R. A. Cruz, I. Juárez-Ramírez. Mater. Sci. Semicond. Process. 134, 105985 (2021), https://doi.org/10.1016/j.mssp.2021.105985.Search in Google Scholar
[17] Y. Xia, R. Gang, L. Xu, S. Huang, L. Zhou, J. Wang. Ceram. Int. 46(2), 1487 (2020), https://doi.org/10.1016/j.ceramint.2019.09.115.Search in Google Scholar
[18] S. Seong, I. S. Park, Y. C. Jung, T. Lee, S. Y. Kim, J. S. Park. Mater. Des. 177, 107831 (2019), https://doi.org/10.1016/j.matdes.2019.107831.Search in Google Scholar
[19] S. S. Naik, S. J. Lee, T. Begildayeva, Y. Yu, H. Lee, M. Y. Choi. Environ. Pollut. 266, 115247 (2020), https://doi.org/10.1016/j.envpol.2020.115247.Search in Google Scholar PubMed
[20] V. Do Truc, T. V. Nguyen, T. V. Vu, T. A. Nguyen, T. D. Ngo, T. Tam Le, T. Lu Le, L. T. Pham, D. T. Lam. ChemistrySelect 8(6), e202204966 (2023), https://doi.org/10.1002/slct.202204966.Search in Google Scholar
[21] T. V. Nguyen, V. Do Truc, T. A. Nguyen, T. L. Pham, D. L. Tran. J. Clust. Sci. 34, 3061 (2023), https://doi.org/10.1007/s10876-023-02448-1.Search in Google Scholar
[22] T. V. Nguyen, V. Do Truc, L. P. Thi, D. L. Tran. Colloid Polym. Sci. 302, 225 (2024), https://doi.org/10.1007/s00396-023-05193-z.Search in Google Scholar
[23] S. Oktay, A. Pizzi, N. Köken, B. Bengü. Int. J. Adhes. Adhes. 130, 103621 (2024), https://doi.org/10.1016/j.ijadhadh.2024.103621.Search in Google Scholar
[24] S. Martinez. Mater. Chem. Phys. 77, 97 (2002), https://doi.org/10.1016/S0254-0584(01)00569-7.Search in Google Scholar
[25] H. Gerengi, K. Schaefer, H. Ibrahim Sahin. J. Ind. Eng. Chem. 18(6), 2204 (2012), https://doi.org/10.1016/j.jiec.2012.06.019.Search in Google Scholar
[26] Q. Huang, X. Liu, G. Zhao, T. Hu, Y. Wang. Anim. Nutr. 4(2), 137 (2018), https://doi.org/10.1016/j.livsci.2020.104228.Search in Google Scholar
[27] L. Elizabeth Valencia-Gómez, S. A. Martel-Estrada, C. Vargas-Requena, J. L. Rivera-Armenta, I. Olivas-Armendáriz, C. Rodríguez-González. Int. J. Biol. Macromol. 93, 1217 (2016), https://doi.org/10.1016/j.ijbiomac.2016.09.083.Search in Google Scholar PubMed
[28] A. Sharma, R. C. Flores-Vallejo, A. Cardoso-Taketa, M. L. Villarreal. J. Ethnopharmacol. 208(17), 264 (2017), https://doi.org/10.1016/j.jep.2016.04.045.Search in Google Scholar PubMed
[29] P. Widsten, C. Heathcote, A. Kandelbauer, G. Guebitz, T. Kudanga, E. N. Prasetyo. Process Biochem. 45(7), 1072 (2010), https://doi.org/10.1016/j.procbio.2010.03.022.Search in Google Scholar
[30] S. Arokiyaraj, N. Sripriya, R. Bhagya, B. Radhika, N. K. Udayaprakash. Asian Pac. J. Trop. Biomed. 2(2), s601 (2012), https://doi.org/10.1016/S2221-1691(12)60281-0.Search in Google Scholar
[31] A. Arbenz, L. Avérous. Green Chem. 17, 2626 (2015), https://doi.org/10.1039/c5gc00282f.Search in Google Scholar
[32] T. V. Nguyen, X. H. Le, P. H. Dao, C. Decker, T. P. Nguyen. Prog. Org. Coat. 124, 137 (2018), https://doi.org/10.1016/j.porgcoat.2018.08.013.Search in Google Scholar
[33] D. G. Roux, E. Paulus. Biochem. J. 77, 315 (1960), https://doi.org/10.1042/bj0770315.Search in Google Scholar PubMed PubMed Central
[34] C. Luo, W. Grigsby, N. Edmonds, A. Easteal, J. Al-Hakkak. J. Appl. Polym. Sci. 117(1), 352 (2010), https://doi.org/10.1002/app.31545.Search in Google Scholar
[35] A. Nicollin, X. Zhou, A. Pizzi, W. Grigsby, K. Rode, L. Delmotte. Ind. Crops Prod. 49, 851 (2013), https://doi.org/10.1016/j.indcrop.2013.06.013.Search in Google Scholar
[36] T. V. Nguyen, T. Vy Do, T. D. Ngo, T. A. Nguyen, L. T. Lu, Q. T. Vu, L. P. Thi, D. L. Tran. RSC Adv. 12(36), 23346 (2022), https://doi.org/10.1039/D2RA03546D.Search in Google Scholar
[37] B. Kaczmarek. Materials 13(14), 3224 (2020), https://doi.org/10.3390/ma13143224.Search in Google Scholar PubMed PubMed Central
[38] M. Vera, C. Silva, N. Li, Y. García, V. A. Jiménez, B. F. Urbano. J. Appl. Polym. Sci. 141, e55437 (2024), https://doi.org/10.1002/app.55437.Search in Google Scholar
[39] S. R. Khan, S. M. Khan, R. U. Khan. Sustainability 15, 3884 (2023), https://doi.org/10.3390/su15053884.Search in Google Scholar
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Special issue on “Advanced materials for environmental protection and sustainability in Asean countries”
- Special topic papers
- Nanocomposite nanofibrous membranes of graphene and graphene oxide: water remediation potential
- Selection of graphene as a conductive additive for biomass-based activated carbon electrode in capacitive deionization: acid-treated as a practical approach to reduce graphene content
- Biochar-based catalysts: a potential disposal of plant biomass from phytoremediation
- Bio-based aerogel composites of coconut pith-derived carbon and chitosan for efficient anionic dye-polluted water treatment
- Study on synthesizing the complex of sorafenib with 2-hydroxypropyl-β-cyclodextrin to enhance the anticancer activity of the drug substance
- An antimicrobial acrylic polyurethane coating with TiO2-Ag hybrid nanoparticles
- Efficient synthesis of tricaproin: catalyst and reaction optimization
- Enhanced photocatalytic and antibacterial properties of silver–zirconia nanoparticles for environmental pollution treatment
- Preparation of sulfur nanoparticles in chitosan-copper complex and investigation of its nematicidal activity against Pratylenchus pratensis in vitro
- Fabrication of cathode electrodes based on activated carbon, reduced-graphene for hybrid capacitive deionization technology
- Biodegradable thermochromic polylactic acid (PLA) sensor
- Effect of ground tyre rubber content on self-healing properties of natural rubber composites
- Preparation of composite based on MXene-Ti3C2 and coconutshell-derived activated carbon for desalination of brackish water
- Producing an antibacterial acrylic polyurethane coating with acylated mimosa tannins
- Effect of multi-walled carbon nanotubes reinforcement on self-healing performance of natural rubber
- Mechanical properties of web kapok/fiberglass-epoxy hybrid composites for marine structures
- Investigation on recycling and reprocessing ability of self-healing natural rubber based on ionic crosslink network
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Special issue on “Advanced materials for environmental protection and sustainability in Asean countries”
- Special topic papers
- Nanocomposite nanofibrous membranes of graphene and graphene oxide: water remediation potential
- Selection of graphene as a conductive additive for biomass-based activated carbon electrode in capacitive deionization: acid-treated as a practical approach to reduce graphene content
- Biochar-based catalysts: a potential disposal of plant biomass from phytoremediation
- Bio-based aerogel composites of coconut pith-derived carbon and chitosan for efficient anionic dye-polluted water treatment
- Study on synthesizing the complex of sorafenib with 2-hydroxypropyl-β-cyclodextrin to enhance the anticancer activity of the drug substance
- An antimicrobial acrylic polyurethane coating with TiO2-Ag hybrid nanoparticles
- Efficient synthesis of tricaproin: catalyst and reaction optimization
- Enhanced photocatalytic and antibacterial properties of silver–zirconia nanoparticles for environmental pollution treatment
- Preparation of sulfur nanoparticles in chitosan-copper complex and investigation of its nematicidal activity against Pratylenchus pratensis in vitro
- Fabrication of cathode electrodes based on activated carbon, reduced-graphene for hybrid capacitive deionization technology
- Biodegradable thermochromic polylactic acid (PLA) sensor
- Effect of ground tyre rubber content on self-healing properties of natural rubber composites
- Preparation of composite based on MXene-Ti3C2 and coconutshell-derived activated carbon for desalination of brackish water
- Producing an antibacterial acrylic polyurethane coating with acylated mimosa tannins
- Effect of multi-walled carbon nanotubes reinforcement on self-healing performance of natural rubber
- Mechanical properties of web kapok/fiberglass-epoxy hybrid composites for marine structures
- Investigation on recycling and reprocessing ability of self-healing natural rubber based on ionic crosslink network