Abstract
Nitrogenous fertilizer drift from farmlands accelerates nitrogen loads in groundwaters. Biochar potential to mitigate nitrogen leaching in urea treated sandy soil was monitored in a four weeks screenhouse leaching column experiment. The trial was a factorial combination of two biochar types (B1 and B2 applied at 5 t/ha) and two urea treatments (with urea at 120 kg/ha and without urea) laid in completely randomized design with three replications. Control that received neither urea nor biochar was compared. Four weekly leaching events were conducted in each leaching column containing 300 g soil amended with appropriate treatments. Amaranthus hybridus was the test crop. The NH4-N and NO3-N leached were generally highest during the week 2 leaching event such that total NO3-N leached was 427.3 % higher than total NH4-N leached with highest contributions from sole urea treatment. Biochar pretreatment reduced total N leached by 9.5 (B1) and 26.8 % (B2) relative to sole urea. Percentage of N added lost to leaching was highest (34.1 %) in sole urea treatment with B1 and B2 pretreatment reducing the value by 54.5 and 46.9 % respectively. Correlation analysis revealed electrical conductivity of the leachate and soil as dominant indicators for N leached in the soil studied.
Funding source: Tertiaty Trust Fund (TETFUND), Nigeria
Acknowledgments
The authors are grateful to the Tertiary Trust Fund (TETFUND) Nigeria for providing fund for this study. The technical support given by the laboratory staff at the Department of Chemistry and Department of Horticulture, Cape Peninsula University of Technology, South Africa is appreciated.
References
[1] M. A. Khan, A. Bashir, S. Fahad, M. Adnan, M. H. Saleem, A. Iqbal, A. A. Al-Huqall, A. A. Alosalmi, S. Saud, K. Liu, M. T. Harrison, T. Nawez. Front. Plant Sci. 13, 879788 (2022), https://doi.org/10.3389/fpls.2022.879788.Suche in Google Scholar PubMed PubMed Central
[2] F. Z. Benlamlih, M. S. Lamhamedi, S. Pepin, L. Benomar, Y. Messaddeq. Agronomy 11, 1129 (2021), https://doi.org/10.3390/agronomy11061129.Suche in Google Scholar
[3] Y. Gao, Z. Fang, L. V. Zwiten, N. Bolan, D. Dong, B. F. Quin, J. Meng, F. Li, F. Wu, H. Wang, W. Chen. Biochar 4, 36 (2022), https://doi.org/10.1007/s42773-022-0016-3.Suche in Google Scholar
[4] P. I. Devi, M. Manjula, R. V. Bhavani. Ann. Rev. Environ. Resour. 47, 399 (2022), https://doi.org/10.1146/auunrev-environ-120920-111015.Suche in Google Scholar
[5] T. Zhang, H. Peng, B. Yang, H. Cao, B. Liu, X. Zheng. Life 12, 53 (2022), https://doi.org/10.3390/life12010053.Suche in Google Scholar PubMed PubMed Central
[6] Y.-L. Kuo, C.-H. Lee, S.-H. Jien. Water 12, 2012 (2022), https://doi.org/10.3390/w12072012.Suche in Google Scholar
[7] H. Abeka, I. Y. D. Lawson, E. Nartey, T. Adjedeh, S. Asuming-Brempong, P. Bindraban, W. K. Atakora. Front. Soil Sci. 2, 1023743 (2022), https://doi.org/10.3389/fsoil.2022.1023743.Suche in Google Scholar
[8] Z. Liu, T. He, T. Cao, T. Yang, J. Meng, W. Chen. J. Soil Sci. Plant Nutr. 17(2), 515 (2017).Suche in Google Scholar
[9] H. Sun, Y. Chen, Z. Yi. Plants 11, 3444 (2022), https://doi.org/10.3390/plants11243444.Suche in Google Scholar PubMed PubMed Central
[10] K. Jindo, Y. Audette, F. S. Higashikawa, C. A. Silva, K. Akashi, G. Mastrolonardo, M. A. Sanchez-Monedero, C. Mondini. Chem. Biol. Technol. Agric. 7, 15 (2020), https://doi.org/10.1186/s40538-02-00182-8.Suche in Google Scholar
[11] R. Zhao, J. Liu, N. Xu, T. He, Z. Liu. Front. Environ. Sci. 10, 950482 (2022), https://doi.org/10.3389/fenvs.2022.950482.Suche in Google Scholar
[12] R. Ahmed, Y. Li, L. Mao, C. Xu, W. Lin, S. Ahmed, W. Ahmed. Agronomy 9, 331 (2019), https://doi.org/10.3390/agronomy9060331.Suche in Google Scholar
[13] M. Rashid, Q. Hussain, R. Hayat, M. Ahmed, M. S. Islam, W. Soufan, D. Elango, K. Rajendran, R. Iqbal, T. A. Bhat. ACS Omega 8, 22732 (2023), https://doi.org/10.1021/acsomega.3c01611.Suche in Google Scholar PubMed PubMed Central
[14] W. Shi, Y. Ju, R. Bian, L. Li, S. Joseph, D. R. G. Mitchell, P. Munroe, S. Teherymoosavi, G. Pan. Sci. Total Environ. 701, 134424 (2020), https://doi.org/10.1016/j.scitotenv.2019.134424.Suche in Google Scholar PubMed
[15] S. Li, S. Wang, Z. Shangguan. Agric. Ecosyst. Environ. 276, 21 (2019), https://doi.org/10.1016/j.afee.2019.02.013.Suche in Google Scholar
[16] N. Maikol, A. O. Haruna, A. Maru, A. Asap, S. Medin. Sci. Rep. 11, 9955 (2021), https://doi.org/10.1038/s41598-021-89332.Suche in Google Scholar
[17] W. M. Bandaranayake, J. P. Syvertsen, A. Schumann, D. M. Kadyampakeni. J. Environ. Qual. 49, 1541 (2020), https://doi.org/10.1002/jeq2.20169.Suche in Google Scholar PubMed
[18] B. Singh, E. Craswell. SN Appl. Sci. 3, 518 (2021), https://doi.org/10.1007/s42452-021-04521-8.Suche in Google Scholar
[19] S. K. P. Jayarajan, L. Kuriachan. Environ. Sci. Pollut. Res. 28, 10248 (2021), https://doi.org/10.1007/s11356-020-11552-y.Suche in Google Scholar PubMed PubMed Central
[20] S. Shukla, A. Saxena. Curr. Sci. 118(6), 883 (2020), https://doi.org/10.18520/cs/v118/i6/883-891.Suche in Google Scholar
[21] C.-C. Tsai, Y.-E. Chang. Agronomy 11, 617 (2021), https://doi.org/10.3390/agronomy11040617.Suche in Google Scholar
[22] Y. Lu, M. L. Silveria, G. A. O. Connor, J. M. B. Vendramini, Y. C. Li. Agrosyst. Geosci. Environ. 5, e20236 (2022), https://doi.org/10.1002/agg2.20236.Suche in Google Scholar
[23] A. S. Taalab, G. W. Ageeb, H. S. Siam, S. A. Mahmoud. Middle East J. Agric. 8(1), 96 (2019).Suche in Google Scholar
[24] E. F. Aboukila, I. N. Nassar, M. Rashad, M. Hafez, J. B. Norton. J. Saudi Soc. Agric. Sci. 17, 390 (2018), https://doi.org/10.1016/j.jssas.2016.09.005.Suche in Google Scholar
[25] N. Hong, Q. Cheng, A. Goonetilleke, E. R. Bandala, A. Liu. J. Ind. Eng. Chem. 89, 222 (2020), https://doi.org/10.1016/j.jiec.2020.05.017.Suche in Google Scholar
[26] Z. Liu, B. Dugan, C. A. Masiello, H. M. Gonnermann. PLoS One 12(6), e0179079 (2017), https://doi.org/10.1371/journal.pone.0179079.Suche in Google Scholar PubMed PubMed Central
[27] I. G. Edeh, O. Masek. Eur. J. Soil Sci. 7, e13138 (2022), https://doi.org/10.1111/ejss.13138.Suche in Google Scholar
[28] J. Mao, K. Zhang, B. Chen. Environ. Pollut. 253, 779 (2019), https://doi.org/10.1016/j.envpol.2019.07.051.Suche in Google Scholar PubMed
[29] S. A. Abdeen. Ann. Res. Rev. Biol. 35(12), 45 (2020), https://doi.org/10.9734/arrb/2020/v35i1230310.Suche in Google Scholar
[30] T. Huang, X. Ju, H. Yang. Sci. Rep. 7, 42247 (2017), https://doi.org/10.1038/srep42247.Suche in Google Scholar PubMed PubMed Central
[31] M. A. Maqsood, U. K. Awan, T. Aziz, H. Arshab, N. Ashraf, M. Ali. Pak. J. Agric. Sci. 54(1), 79 (2016), https://doi.org/10.21162/PAKJAS/16.4867.Suche in Google Scholar
[32] D. L. Gelardi, I. H. Ainuddin, D. A. Rippner, J. E. Patino, M. A. Najm, S. J. Parikh. Soil 7, 811 (2021), https://doi.org/10.5194/soil-7-811-2021.Suche in Google Scholar
[33] S. Wang, J.-H. Kwak, M. S. Islam, M. A. Naeth, E. M. Gamal, S. X. Chang. Sci. Total Environ. 712, 136538 (2020), https://doi.org/10.1016/j.scitotenv.2020.136538.Suche in Google Scholar PubMed
[34] Y. Jia, Z. Hu, Y. Ba, W. Qi. Chem. Biol. Technol. Agric. 8, 3 (2021), https://doi.org/10.1186/s40538-020-00205.Suche in Google Scholar
[35] J. Frimpong-Manso, S.A. Ganiyu, J. K. Xorse. Proc. Int. Conf. Climate Change 6(1), 1 (2022), https://doi.org/10.17501/2513258X.2022.6101.Suche in Google Scholar
[36] J. Yang, Z. He, Y. Yang, P. Stoffela, X. Yang, D. Banlas, S. Mishra. Environ. Sci. Pollut. 14(4), 266 (2007), https://doi.org/10.1065/espr2007.01.378.Suche in Google Scholar PubMed
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Special topic papers
- An innovative method using data acquisition and MATLAB for the electrochemical oxidation of formalin and the conversion of the oxidized products into a sound signal
- Evaluation of in vitro antioxidant activities, total phenolic and elemental contents of common herbs and spices (Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves) in South-West Nigeria
- Management of biofilm-associated infections in diabetic wounds – from bench to bedside
- Biodegradation of naphthalene using Kocuria rosea isolated from a Sawmill in Ikenne, Southwestern Nigeria
- Production of green hydrogen through PEM water electrolysis
- Synthesis of potash alum from waste aluminum cans for the purification of river water
- Current advances in QuEChERS extraction of mycotoxins in various food and feed matrices
- Biological potentials of Landolphia owariensis leaf methanolic extract against pathogenic fungi isolates from different Dioscorea species
- Nitrogen leaching mitigation by tithonia biochar (Tithochar) in urea fertilizer treated sandy soil
- Phytochemicals as potential active principal components for formulation of alternative antifungal remedies against Trichophyton spp.: a systematic review
- A review on the green chemistry perspective of multipurpose use of cow urine
- Reactions of trans-[PtX2(pic)2] (Pic = γ-PICOLINE, X = Cl−, NO3 −) with N-acetyl-l-cysteine and glutathione
Artikel in diesem Heft
- Frontmatter
- In this issue
- Special topic papers
- An innovative method using data acquisition and MATLAB for the electrochemical oxidation of formalin and the conversion of the oxidized products into a sound signal
- Evaluation of in vitro antioxidant activities, total phenolic and elemental contents of common herbs and spices (Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves) in South-West Nigeria
- Management of biofilm-associated infections in diabetic wounds – from bench to bedside
- Biodegradation of naphthalene using Kocuria rosea isolated from a Sawmill in Ikenne, Southwestern Nigeria
- Production of green hydrogen through PEM water electrolysis
- Synthesis of potash alum from waste aluminum cans for the purification of river water
- Current advances in QuEChERS extraction of mycotoxins in various food and feed matrices
- Biological potentials of Landolphia owariensis leaf methanolic extract against pathogenic fungi isolates from different Dioscorea species
- Nitrogen leaching mitigation by tithonia biochar (Tithochar) in urea fertilizer treated sandy soil
- Phytochemicals as potential active principal components for formulation of alternative antifungal remedies against Trichophyton spp.: a systematic review
- A review on the green chemistry perspective of multipurpose use of cow urine
- Reactions of trans-[PtX2(pic)2] (Pic = γ-PICOLINE, X = Cl−, NO3 −) with N-acetyl-l-cysteine and glutathione