Startseite Production of green hydrogen through PEM water electrolysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Production of green hydrogen through PEM water electrolysis

  • Shawn Gouws EMAIL logo und Jason Mackay
Veröffentlicht/Copyright: 1. Mai 2024

Abstract

The need for abundant, sustainable, and clean energy is becoming increasingly important in the modern world due to continuous population growth and industrial expansion. Hydrogen (H2) has been identified as a potential energy carrier due to its high gravimetric energy density. Because H2 is not frequently found in its molecular form, it has to be obtained through various methods such as steam methane reforming, coal gasification, fossil fuels, and electrochemical techniques. H2 produced via PEMWE has proved to be an efficient method compared to other electrolysers. The limiting factor of a PEM electrolyser system is the OER catalyst. Commercially, IrO2 and RuO2 are used; however, both these metals are rare and expensive. Current research reports the use of binary metal oxides as an alternative OER catalyst to decrease the overall CAPEX costs. Various synthesis methods are available, with the Adams’ fusion method being the simplest. Characterisation techniques used to evaluate the performance of these catalysts include cyclic voltammetry (CV), linear scan voltammetry (LSV), XRD, XRF, SEM/EDS, and chronopotentiometry. Hydrogen as a clean fuel has a broad potential for use across all sectors, including transportation, residential, and industrial. In recent years, extensive research has been done on all aspects of hydrogen production, storage, and transportation. This review paper aims to study other bimetallic metals to reduce the Ir content used as an oxidative evolution reaction to reduce the capital cost of the PEM electrolyser. To produce green hydrogen that could reduce the carbon footprint in several industrial processes.


Corresponding author: Shawn Gouws, Department of Chemistry, Nelson Mandela University, Summerstrand, Gqeberha (Port Elizabeth), 6031, South Africa, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023.

Acknowledgments

This research was financially supported through the Research Development Fund of Nelson Mandela University. The Rand Water bursary scheme financially supports an MSc: Chemistry student Jason Mackay. Gouws MC have proofread the article.

References

[1] D. Bresette. Fossil Fuels (2021), https://www.eesi.org/topics/fossil-fuels/description (accessed Oct 20, 2023).Suche in Google Scholar

[2] M. Mormirlah, T. N. Vezirogla. Int. J. Hydrogen Energy 30, 795 (2015).Suche in Google Scholar

[3] J. Chi, H. Yu. Chin. J. Catal. 39, 390 (2018), https://doi.org/10.1016/s1872-2067(17)62949-8.Suche in Google Scholar

[4] N. R. Simone. 12 Pros and Cons of Fossil Fuels. Sustainability Success (2023), https://sustainability-success.com/pros-and-cons-of-fossil.Suche in Google Scholar

[5] L. Liu. Curr. Opin. Chem. Eng. 34, 100743 (2021), https://doi.org/10.1016/j.coche.2021.100743.Suche in Google Scholar

[6] J. Yang, M. J. Jang, X. Zeng, Y. S. Park, J. Lee, S. M. Choi, Y. Yin. Electrochem. Commun. 131, 107118 (2021), https://doi.org/10.1016/j.elecom.2021.107118.Suche in Google Scholar

[7] M. Roeth. NACFE December 2020 Newsletter, https://nacfe.org/news/nacfe-december-2020-newsletter/ (accessed Feb 14, 2023).Suche in Google Scholar

[8] P. Gangadharan, C. K. Krishna, H. L. Helen. Chem. Eng. Res. Des. 90, 1956 (2012), https://doi.org/10.1016/j.cherd.2012.04.008.Suche in Google Scholar

[9] M. Yi, S. Yang, D. Xiang, X. Li, Y. Qian. J. Clean. Prod. 71, 59 (2014), https://doi.org/10.1016/j.jclepro.2013.12.086.Suche in Google Scholar

[10] Z. Chen, L. Guo, L. Pan, T. Yan, Z. He, Y. Li, C. Shi, Z. F. Huang, X. Zhang, J. J. Zou. Adv. Energy Mater. 12, 2103670 (2022), https://doi.org/10.1002/aenm.202103670.Suche in Google Scholar

[11] L. Allidières, A. Brisse, P. Millet, S. Valentin, M. Zeller. Int. J. Hydrogen Energy 44, 9690 (2019), https://doi.org/10.1016/j.ijhydene.2018.11.186.Suche in Google Scholar

[12] C. Rozain, E. Mayousse, N. Guillet, P. Millet. Appl. Catal. B Environ. 182, 153 (2016), https://doi.org/10.1016/j.apcatb.2015.09.013.Suche in Google Scholar

[13] G. Mirshekari, R. Ouimet, Z. Zeng, H. Yu, S. Bliznakov, L. Bonville, A. Niedzwiecki, C. Capuano, K. Ayers, R. Maric. Int. J. Hydrogen Energy 46, 1526 (2021), https://doi.org/10.1016/j.ijhydene.2020.10.112.Suche in Google Scholar

[14] Q. Hu, C. Deng, C. Y. Toe, X. Li, J. Tan, H. Yang, C. He. Adv. Energy Mater. 12, 2201047 (2022), https://doi.org/10.1002/aenm.202201047.Suche in Google Scholar

[15] M. Carmo, D. L. Fritz, J. Mergel, D. Stolten. Int. J. Hydrogen Energy 38, 4901 (2013), https://doi.org/10.1016/j.ijhydene.2013.01.151.Suche in Google Scholar

[16] S. H. Akella, D. Ebenezer, R. S. Sai Siddhardha, A. Alkesh, N. K. Mal. Sci. Rep. 8, 12082 (2018), https://doi.org/10.1038/s41598-018-30215-0.Suche in Google Scholar PubMed PubMed Central

[17] W. Dönitz, E. Erdle. Int. J. Hydrogen Energy 10, 291 (2018).Suche in Google Scholar

[18] M. A. Laguna-Bercero. J. Power Sources 203, 4 (2012), https://doi.org/10.1016/j.jpowsour.2011.12.019.Suche in Google Scholar

[19] Y. Yan, B. Y. Xia, B. Zhao, X. Wang. J. Mater. Chem. A 4, 17587 (2016), https://doi.org/10.1039/c6ta08075h.Suche in Google Scholar

[20] C. Felix, T. Maiyalagan, S. Pasupathi, B. Bladergroen, V. Linkov. Micro Nanosyst. 4, 186 (2012), https://doi.org/10.2174/1876402911204030186.Suche in Google Scholar

[21] S. Roy, M. Ethakota. Solid oxide electrolysis (SOEC): potential technology for low-cost green H2 (2022), https://h2-tech.com/articles/2022/q4-2022/special-focus-future-of-hydrogen-energy/solid-oxide-electrolysis-cell-soec-potential-technology-for-low-cost-green-h-sub-2-sub/.Suche in Google Scholar

[22] D. M. F. Santos, C. A. C. Sequeira, J. L. Figueiredo. Quim. Nova 36, 1176 (2013), https://doi.org/10.1590/s0100-40422013000800017.Suche in Google Scholar

[23] F. A. Soudens. A Modified Adams Fusion Method for the Synthesis of Binary Metal Oxide Catalysts for the Oxygen Evolution Reaction. Master’s thesis, University of the Western Cape, Cape Town (2020).Suche in Google Scholar

[24] W. T. Grubb. J. Phys. Chem. 63, 55 (1959), https://doi.org/10.1021/j150571a015.Suche in Google Scholar

[25] M. Wang, G. Wang, Z. Sun, Y. Zhang, D. Xu. GEI 2, 436 (2019), https://doi.org/10.1016/j.gloei.2019.11.019.Suche in Google Scholar

[26] M. Frisch, M. H. Raza, M. Ye, R. Sachse, B. Pail, R. Gunder, N. Pinna, R. Kraehnert. Adv. Mater. Interfaces 9, 2102035 (2022), https://doi.org/10.1002/admi.202102035.Suche in Google Scholar

[27] S. Stiber, N. Sata, T. Morawietz, S. A. Ansar, T. Jahnke, J. K. Lee, A. Bazylak, A. Fallisch, A. S. Gago, K. A. Friedrich. Energy Environ. Sci. 15, 109 (2022), https://doi.org/10.1039/d1ee02112e.Suche in Google Scholar

[28] F. A. de Bruijn, V. A. Dam, G. J. Janssen. Fuel Cells 8(1), 3 (2008).10.1002/fuce.200700053Suche in Google Scholar

[29] O. Kasain, T. Li, A. M. Mingers, K. Schweinar, A. Savan, A. Ludwig, K. Mayrhofer. J. Phys. Energy 3, 034006 (2021), https://doi.org/10.1088/2515-7655/abbd34.Suche in Google Scholar

[30] R. Sigwadi, M. S. Dhlamini, T. Mokrani, F. Nemavhola, P. F. Nonjola, P. F. Msomi. NLM 5, 2240 (2019), https://doi.org/10.1016/j.heliyon.2019.e02240.Suche in Google Scholar PubMed PubMed Central

[31] P. C. Chen, M. Li, J. Jin, S. Yu, S. Chen, C. Chen, M. Salmeron, P. Yang. ACS Mater. Lett. 3, 1440 (2021), https://doi.org/10.1021/acsmaterialslett.1c00428.Suche in Google Scholar

[32] A. Goni-Urtiaga, D. Presvytes, K. Scott. Int. J. Hydrogen Energy 37(4), 3358 (2012), https://doi.org/10.1016/j.ijhydene.2011.09.152.Suche in Google Scholar

[33] K. Zhang, X. Liang, L. Wang, K. Sun, Y. Wang, Z. Xie, Q. Wu, X. Bai, M.S. Hamdy, H. Chen, X. Zou. Nano Res. Energy 1(3), e9120032 (2022).10.26599/NRE.2022.9120032Suche in Google Scholar

[34] Q. Pei, J. Liu, H. Wu, W. Wang, J. Ji, K. Li, C. Gong, L. Wang. Polymers 14, 2621 (2022), https://doi.org/10.3390/polym14132621.Suche in Google Scholar PubMed PubMed Central

[35] J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Norskov. J. Electroanal. Chem. 607, 83 (2007), https://doi.org/10.1016/j.jelechem.2006.11.008.Suche in Google Scholar

[36] S. Siracusano, N. Van Dijk, E Payne-Johnson, V Bagio, A S Arico. Appl. Catal. B Environ. 164, 488 (2015), https://doi.org/10.1016/j.apcatb.2014.09.005.Suche in Google Scholar

[37] J. C. Cruz, A. Ramos Hernandez, M. Guerra-Balcazar, A. U. Chavez-Ramirez, J. Ledesma-Garcia, L. G. Arriaga. Int. J. Electrochem. Sci. 7, 7866 (2012), https://doi.org/10.1016/s1452-3981(23)17960-0.Suche in Google Scholar

[38] I. C. de Freitas, L. S. Parreira, C. Eduardo, M. Barbosa, B. A. Novaes, T. Mou, A. V. Alves, J. Quiroz, Y-C. Wang, T. J. Slater, A. Thomas, B. Wang, S. J. Haigh, P. H. Camargo. Nanoscale 12(23), 12181–12291 (2020), https://doi.org/10.1039/d.Suche in Google Scholar

[39] A. Touni, A. Papaderakis, D. Karfaridis, A. Banti, I. Mintsouli, D. Lambropoulou, S. Sotiropoulos. J. Electroanal. Chem. 855, 113485 (2019), https://doi.org/10.1016/j.jelechem.2019.113485.Suche in Google Scholar

[40] D. Lebedev, M. Povia, K. Waltar, P. M. Abdala, I. E. Castelli, E. Fabbri, M. V. Blanco, A. Fedorov, C. Copéret, N. Marzari, T. J. Schmidt. Chem. Mater. 29, 5182 (2017), https://doi.org/10.1021/acs.chemmater.7b00766.Suche in Google Scholar

[41] M. F. Kaya, N. Demir, N. V. Rees, A. El-Kharouf. Int. J. Hydrogen Energy 46, 20825 (2021), https://doi.org/10.1016/j.ijhydene.2021.03.203.Suche in Google Scholar

[42] A. Papaderakis, D. Tsiplakides, S. Balomenou, S. Sotiropoulos. J. Electroanal. Chem. 757, 216 (2015), https://doi.org/10.1016/j.jelechem.2015.09.033.Suche in Google Scholar

[43] Y. N. Regmi, E. Tzanetopoulos, G. Zeng, X. Peng, D. I. Kushner, T. A. Kistler, L. A. King, N. Danilovic. ACS Catal. 10, 13125 (2020), https://doi.org/10.1021/acscatal.0c03098.Suche in Google Scholar

[44] S. Moon, Y. B. Cho, A. Yu, M. H. Kim, C. Lee, Y. Lee. ACS Appl. Mater. Interfaces 11, 1979 (2019), https://doi.org/10.1021/acsami.8b14563.Suche in Google Scholar PubMed

[45] S. Ono, J. P. Brodholt, G. D. Price. J. Phys. Condens. Matter 20, 045202 (2008), https://doi.org/10.1088/0953-8984/20/04/045202.Suche in Google Scholar

[46] J. Shin, W. S. Hwang, H. Choi. Technol. Forecast. Soc. Change 143, 239 (2019), https://doi.org/10.1016/j.techfore.2019.02.001.Suche in Google Scholar

[47] P. M. Ordin. Review of Hydrogen Accidents and Incidents in NASA Operations, Lewis Research Center, Cleveland, Ohio (1974).Suche in Google Scholar

[48] A. Chapman, K. Itaoka, K. Hirose, F. T. Davidson, K. Nagasawa, A. C. Lloyd, M. E. Webber, Z. Kurban, S. Managi, T. Tamaki, M. C. Lewis, R. E. Hebner, Y. Fujii. Int. J. Hydrogen Energy 44(13), 6371 (2019), https://doi.org/10.1016/j.ijhydene.2019.01.168.Suche in Google Scholar

[49] Y. Zhang, Z. Zhang, X. Yang, R. Wang, H. Duan, Z. Shen, L. Li, Y. Su, R. Yang, Y. Zhang, X. Su, Y. Huang, T. Zhang. Green Chem. 22, 6855 (2020), https://doi.org/10.1039/d0gc02302g.Suche in Google Scholar

[50] A. Züttel. Naturwissenschaften 91, 157 (2004), https://doi.org/10.1007/s00114-004-0516-x.Suche in Google Scholar PubMed

Published Online: 2024-05-01
Published in Print: 2024-10-28

© 2024 IUPAC & De Gruyter

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1022/html
Button zum nach oben scrollen