Abstract
The need for abundant, sustainable, and clean energy is becoming increasingly important in the modern world due to continuous population growth and industrial expansion. Hydrogen (H2) has been identified as a potential energy carrier due to its high gravimetric energy density. Because H2 is not frequently found in its molecular form, it has to be obtained through various methods such as steam methane reforming, coal gasification, fossil fuels, and electrochemical techniques. H2 produced via PEMWE has proved to be an efficient method compared to other electrolysers. The limiting factor of a PEM electrolyser system is the OER catalyst. Commercially, IrO2 and RuO2 are used; however, both these metals are rare and expensive. Current research reports the use of binary metal oxides as an alternative OER catalyst to decrease the overall CAPEX costs. Various synthesis methods are available, with the Adams’ fusion method being the simplest. Characterisation techniques used to evaluate the performance of these catalysts include cyclic voltammetry (CV), linear scan voltammetry (LSV), XRD, XRF, SEM/EDS, and chronopotentiometry. Hydrogen as a clean fuel has a broad potential for use across all sectors, including transportation, residential, and industrial. In recent years, extensive research has been done on all aspects of hydrogen production, storage, and transportation. This review paper aims to study other bimetallic metals to reduce the Ir content used as an oxidative evolution reaction to reduce the capital cost of the PEM electrolyser. To produce green hydrogen that could reduce the carbon footprint in several industrial processes.
Acknowledgments
This research was financially supported through the Research Development Fund of Nelson Mandela University. The Rand Water bursary scheme financially supports an MSc: Chemistry student Jason Mackay. Gouws MC have proofread the article.
References
[1] D. Bresette. Fossil Fuels (2021), https://www.eesi.org/topics/fossil-fuels/description (accessed Oct 20, 2023).Suche in Google Scholar
[2] M. Mormirlah, T. N. Vezirogla. Int. J. Hydrogen Energy 30, 795 (2015).Suche in Google Scholar
[3] J. Chi, H. Yu. Chin. J. Catal. 39, 390 (2018), https://doi.org/10.1016/s1872-2067(17)62949-8.Suche in Google Scholar
[4] N. R. Simone. 12 Pros and Cons of Fossil Fuels. Sustainability Success (2023), https://sustainability-success.com/pros-and-cons-of-fossil.Suche in Google Scholar
[5] L. Liu. Curr. Opin. Chem. Eng. 34, 100743 (2021), https://doi.org/10.1016/j.coche.2021.100743.Suche in Google Scholar
[6] J. Yang, M. J. Jang, X. Zeng, Y. S. Park, J. Lee, S. M. Choi, Y. Yin. Electrochem. Commun. 131, 107118 (2021), https://doi.org/10.1016/j.elecom.2021.107118.Suche in Google Scholar
[7] M. Roeth. NACFE December 2020 Newsletter, https://nacfe.org/news/nacfe-december-2020-newsletter/ (accessed Feb 14, 2023).Suche in Google Scholar
[8] P. Gangadharan, C. K. Krishna, H. L. Helen. Chem. Eng. Res. Des. 90, 1956 (2012), https://doi.org/10.1016/j.cherd.2012.04.008.Suche in Google Scholar
[9] M. Yi, S. Yang, D. Xiang, X. Li, Y. Qian. J. Clean. Prod. 71, 59 (2014), https://doi.org/10.1016/j.jclepro.2013.12.086.Suche in Google Scholar
[10] Z. Chen, L. Guo, L. Pan, T. Yan, Z. He, Y. Li, C. Shi, Z. F. Huang, X. Zhang, J. J. Zou. Adv. Energy Mater. 12, 2103670 (2022), https://doi.org/10.1002/aenm.202103670.Suche in Google Scholar
[11] L. Allidières, A. Brisse, P. Millet, S. Valentin, M. Zeller. Int. J. Hydrogen Energy 44, 9690 (2019), https://doi.org/10.1016/j.ijhydene.2018.11.186.Suche in Google Scholar
[12] C. Rozain, E. Mayousse, N. Guillet, P. Millet. Appl. Catal. B Environ. 182, 153 (2016), https://doi.org/10.1016/j.apcatb.2015.09.013.Suche in Google Scholar
[13] G. Mirshekari, R. Ouimet, Z. Zeng, H. Yu, S. Bliznakov, L. Bonville, A. Niedzwiecki, C. Capuano, K. Ayers, R. Maric. Int. J. Hydrogen Energy 46, 1526 (2021), https://doi.org/10.1016/j.ijhydene.2020.10.112.Suche in Google Scholar
[14] Q. Hu, C. Deng, C. Y. Toe, X. Li, J. Tan, H. Yang, C. He. Adv. Energy Mater. 12, 2201047 (2022), https://doi.org/10.1002/aenm.202201047.Suche in Google Scholar
[15] M. Carmo, D. L. Fritz, J. Mergel, D. Stolten. Int. J. Hydrogen Energy 38, 4901 (2013), https://doi.org/10.1016/j.ijhydene.2013.01.151.Suche in Google Scholar
[16] S. H. Akella, D. Ebenezer, R. S. Sai Siddhardha, A. Alkesh, N. K. Mal. Sci. Rep. 8, 12082 (2018), https://doi.org/10.1038/s41598-018-30215-0.Suche in Google Scholar PubMed PubMed Central
[17] W. Dönitz, E. Erdle. Int. J. Hydrogen Energy 10, 291 (2018).Suche in Google Scholar
[18] M. A. Laguna-Bercero. J. Power Sources 203, 4 (2012), https://doi.org/10.1016/j.jpowsour.2011.12.019.Suche in Google Scholar
[19] Y. Yan, B. Y. Xia, B. Zhao, X. Wang. J. Mater. Chem. A 4, 17587 (2016), https://doi.org/10.1039/c6ta08075h.Suche in Google Scholar
[20] C. Felix, T. Maiyalagan, S. Pasupathi, B. Bladergroen, V. Linkov. Micro Nanosyst. 4, 186 (2012), https://doi.org/10.2174/1876402911204030186.Suche in Google Scholar
[21] S. Roy, M. Ethakota. Solid oxide electrolysis (SOEC): potential technology for low-cost green H2 (2022), https://h2-tech.com/articles/2022/q4-2022/special-focus-future-of-hydrogen-energy/solid-oxide-electrolysis-cell-soec-potential-technology-for-low-cost-green-h-sub-2-sub/.Suche in Google Scholar
[22] D. M. F. Santos, C. A. C. Sequeira, J. L. Figueiredo. Quim. Nova 36, 1176 (2013), https://doi.org/10.1590/s0100-40422013000800017.Suche in Google Scholar
[23] F. A. Soudens. A Modified Adams Fusion Method for the Synthesis of Binary Metal Oxide Catalysts for the Oxygen Evolution Reaction. Master’s thesis, University of the Western Cape, Cape Town (2020).Suche in Google Scholar
[24] W. T. Grubb. J. Phys. Chem. 63, 55 (1959), https://doi.org/10.1021/j150571a015.Suche in Google Scholar
[25] M. Wang, G. Wang, Z. Sun, Y. Zhang, D. Xu. GEI 2, 436 (2019), https://doi.org/10.1016/j.gloei.2019.11.019.Suche in Google Scholar
[26] M. Frisch, M. H. Raza, M. Ye, R. Sachse, B. Pail, R. Gunder, N. Pinna, R. Kraehnert. Adv. Mater. Interfaces 9, 2102035 (2022), https://doi.org/10.1002/admi.202102035.Suche in Google Scholar
[27] S. Stiber, N. Sata, T. Morawietz, S. A. Ansar, T. Jahnke, J. K. Lee, A. Bazylak, A. Fallisch, A. S. Gago, K. A. Friedrich. Energy Environ. Sci. 15, 109 (2022), https://doi.org/10.1039/d1ee02112e.Suche in Google Scholar
[28] F. A. de Bruijn, V. A. Dam, G. J. Janssen. Fuel Cells 8(1), 3 (2008).10.1002/fuce.200700053Suche in Google Scholar
[29] O. Kasain, T. Li, A. M. Mingers, K. Schweinar, A. Savan, A. Ludwig, K. Mayrhofer. J. Phys. Energy 3, 034006 (2021), https://doi.org/10.1088/2515-7655/abbd34.Suche in Google Scholar
[30] R. Sigwadi, M. S. Dhlamini, T. Mokrani, F. Nemavhola, P. F. Nonjola, P. F. Msomi. NLM 5, 2240 (2019), https://doi.org/10.1016/j.heliyon.2019.e02240.Suche in Google Scholar PubMed PubMed Central
[31] P. C. Chen, M. Li, J. Jin, S. Yu, S. Chen, C. Chen, M. Salmeron, P. Yang. ACS Mater. Lett. 3, 1440 (2021), https://doi.org/10.1021/acsmaterialslett.1c00428.Suche in Google Scholar
[32] A. Goni-Urtiaga, D. Presvytes, K. Scott. Int. J. Hydrogen Energy 37(4), 3358 (2012), https://doi.org/10.1016/j.ijhydene.2011.09.152.Suche in Google Scholar
[33] K. Zhang, X. Liang, L. Wang, K. Sun, Y. Wang, Z. Xie, Q. Wu, X. Bai, M.S. Hamdy, H. Chen, X. Zou. Nano Res. Energy 1(3), e9120032 (2022).10.26599/NRE.2022.9120032Suche in Google Scholar
[34] Q. Pei, J. Liu, H. Wu, W. Wang, J. Ji, K. Li, C. Gong, L. Wang. Polymers 14, 2621 (2022), https://doi.org/10.3390/polym14132621.Suche in Google Scholar PubMed PubMed Central
[35] J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Norskov. J. Electroanal. Chem. 607, 83 (2007), https://doi.org/10.1016/j.jelechem.2006.11.008.Suche in Google Scholar
[36] S. Siracusano, N. Van Dijk, E Payne-Johnson, V Bagio, A S Arico. Appl. Catal. B Environ. 164, 488 (2015), https://doi.org/10.1016/j.apcatb.2014.09.005.Suche in Google Scholar
[37] J. C. Cruz, A. Ramos Hernandez, M. Guerra-Balcazar, A. U. Chavez-Ramirez, J. Ledesma-Garcia, L. G. Arriaga. Int. J. Electrochem. Sci. 7, 7866 (2012), https://doi.org/10.1016/s1452-3981(23)17960-0.Suche in Google Scholar
[38] I. C. de Freitas, L. S. Parreira, C. Eduardo, M. Barbosa, B. A. Novaes, T. Mou, A. V. Alves, J. Quiroz, Y-C. Wang, T. J. Slater, A. Thomas, B. Wang, S. J. Haigh, P. H. Camargo. Nanoscale 12(23), 12181–12291 (2020), https://doi.org/10.1039/d.Suche in Google Scholar
[39] A. Touni, A. Papaderakis, D. Karfaridis, A. Banti, I. Mintsouli, D. Lambropoulou, S. Sotiropoulos. J. Electroanal. Chem. 855, 113485 (2019), https://doi.org/10.1016/j.jelechem.2019.113485.Suche in Google Scholar
[40] D. Lebedev, M. Povia, K. Waltar, P. M. Abdala, I. E. Castelli, E. Fabbri, M. V. Blanco, A. Fedorov, C. Copéret, N. Marzari, T. J. Schmidt. Chem. Mater. 29, 5182 (2017), https://doi.org/10.1021/acs.chemmater.7b00766.Suche in Google Scholar
[41] M. F. Kaya, N. Demir, N. V. Rees, A. El-Kharouf. Int. J. Hydrogen Energy 46, 20825 (2021), https://doi.org/10.1016/j.ijhydene.2021.03.203.Suche in Google Scholar
[42] A. Papaderakis, D. Tsiplakides, S. Balomenou, S. Sotiropoulos. J. Electroanal. Chem. 757, 216 (2015), https://doi.org/10.1016/j.jelechem.2015.09.033.Suche in Google Scholar
[43] Y. N. Regmi, E. Tzanetopoulos, G. Zeng, X. Peng, D. I. Kushner, T. A. Kistler, L. A. King, N. Danilovic. ACS Catal. 10, 13125 (2020), https://doi.org/10.1021/acscatal.0c03098.Suche in Google Scholar
[44] S. Moon, Y. B. Cho, A. Yu, M. H. Kim, C. Lee, Y. Lee. ACS Appl. Mater. Interfaces 11, 1979 (2019), https://doi.org/10.1021/acsami.8b14563.Suche in Google Scholar PubMed
[45] S. Ono, J. P. Brodholt, G. D. Price. J. Phys. Condens. Matter 20, 045202 (2008), https://doi.org/10.1088/0953-8984/20/04/045202.Suche in Google Scholar
[46] J. Shin, W. S. Hwang, H. Choi. Technol. Forecast. Soc. Change 143, 239 (2019), https://doi.org/10.1016/j.techfore.2019.02.001.Suche in Google Scholar
[47] P. M. Ordin. Review of Hydrogen Accidents and Incidents in NASA Operations, Lewis Research Center, Cleveland, Ohio (1974).Suche in Google Scholar
[48] A. Chapman, K. Itaoka, K. Hirose, F. T. Davidson, K. Nagasawa, A. C. Lloyd, M. E. Webber, Z. Kurban, S. Managi, T. Tamaki, M. C. Lewis, R. E. Hebner, Y. Fujii. Int. J. Hydrogen Energy 44(13), 6371 (2019), https://doi.org/10.1016/j.ijhydene.2019.01.168.Suche in Google Scholar
[49] Y. Zhang, Z. Zhang, X. Yang, R. Wang, H. Duan, Z. Shen, L. Li, Y. Su, R. Yang, Y. Zhang, X. Su, Y. Huang, T. Zhang. Green Chem. 22, 6855 (2020), https://doi.org/10.1039/d0gc02302g.Suche in Google Scholar
[50] A. Züttel. Naturwissenschaften 91, 157 (2004), https://doi.org/10.1007/s00114-004-0516-x.Suche in Google Scholar PubMed
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Special topic papers
- An innovative method using data acquisition and MATLAB for the electrochemical oxidation of formalin and the conversion of the oxidized products into a sound signal
- Evaluation of in vitro antioxidant activities, total phenolic and elemental contents of common herbs and spices (Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves) in South-West Nigeria
- Management of biofilm-associated infections in diabetic wounds – from bench to bedside
- Biodegradation of naphthalene using Kocuria rosea isolated from a Sawmill in Ikenne, Southwestern Nigeria
- Production of green hydrogen through PEM water electrolysis
- Synthesis of potash alum from waste aluminum cans for the purification of river water
- Current advances in QuEChERS extraction of mycotoxins in various food and feed matrices
- Biological potentials of Landolphia owariensis leaf methanolic extract against pathogenic fungi isolates from different Dioscorea species
- Nitrogen leaching mitigation by tithonia biochar (Tithochar) in urea fertilizer treated sandy soil
- Phytochemicals as potential active principal components for formulation of alternative antifungal remedies against Trichophyton spp.: a systematic review
- A review on the green chemistry perspective of multipurpose use of cow urine
- Reactions of trans-[PtX2(pic)2] (Pic = γ-PICOLINE, X = Cl−, NO3 −) with N-acetyl-l-cysteine and glutathione
Artikel in diesem Heft
- Frontmatter
- In this issue
- Special topic papers
- An innovative method using data acquisition and MATLAB for the electrochemical oxidation of formalin and the conversion of the oxidized products into a sound signal
- Evaluation of in vitro antioxidant activities, total phenolic and elemental contents of common herbs and spices (Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves) in South-West Nigeria
- Management of biofilm-associated infections in diabetic wounds – from bench to bedside
- Biodegradation of naphthalene using Kocuria rosea isolated from a Sawmill in Ikenne, Southwestern Nigeria
- Production of green hydrogen through PEM water electrolysis
- Synthesis of potash alum from waste aluminum cans for the purification of river water
- Current advances in QuEChERS extraction of mycotoxins in various food and feed matrices
- Biological potentials of Landolphia owariensis leaf methanolic extract against pathogenic fungi isolates from different Dioscorea species
- Nitrogen leaching mitigation by tithonia biochar (Tithochar) in urea fertilizer treated sandy soil
- Phytochemicals as potential active principal components for formulation of alternative antifungal remedies against Trichophyton spp.: a systematic review
- A review on the green chemistry perspective of multipurpose use of cow urine
- Reactions of trans-[PtX2(pic)2] (Pic = γ-PICOLINE, X = Cl−, NO3 −) with N-acetyl-l-cysteine and glutathione