Management of biofilm-associated infections in diabetic wounds – from bench to bedside
-
Subhasri Bogadi
und Jamuna Bai Aswathanarayan
Abstract
Biofilms are complex bacterial colonies embedded in an extracellular matrix. These pose a major obstacle to wound healing and are noticeable in chronic wounds. It protects the bacteria from the host’s immune system and conventional antibiotic treatments. The biofilm’s protective matrix prevents essential nutrients and oxygen from diffusing into the surrounding healthy tissue. In addition, microbes living in biofilms naturally have increased resistance to antibiotics, which reduces the effectiveness of traditional therapies. As such, biofilms serve as persistent reservoirs of infection, which further disrupts the normal course of wound healing. In this review, the current formulation strategies such as hydrogels, polymeric nanoparticles, and nanofibers that are used in wound healing to counteract biofilms have been comprehensively discussed. The formulations have been meticulously designed and developed to disturb the biofilm matrix, prevent the growth of microorganisms, and increase the potency of antimicrobials and antibiotics. The mechanism of action, advantages and limitations associated with the existing formulation strategies have been reviewed. The formulation strategies that have been translated into clinical applications and patented are also discussed in this paper.
Funding source: University Grants Commission
Acknowledgments
The authors would like to thank the UGC BSR Start-up Research Grant, Department of Science and Technology – Fund for Improvement of Science and Technology Infrastructure (DST-FIST), Promotion of University Research and Scientific Excellence (DST-PURSE), SIG In Biofilms in Clinical Settings & their Control, JSS AHER for the facilities provided for conducting the research.
-
Research funding: The authors, Ms. Bogadi Subhasri, wish to express their gratitude to the Department of Science and Technology (DST-INSPIRE) Fellowship (ID IF200201) application reference no DST/INSPIRE/03/20 21/001920. New Delhi and technically approved by ICMR (Indian council of medical research) with Fellowship ID 2021–8531. The authors would like to acknowledge JSS AHER for the SIG grant – Biofilms in Clinical Settings & their Control and to UGC-BSR for Start-up Research Grant.
Abbreviations
- PRRs
-
Pattern recognition receptors
- PAMPs
-
Pathogen-associated molecular patterns
- TLRs
-
Toll-like receptors
- NLRs
-
NOD-like receptors
- CLRs
-
C-type lectin receptors
- ROS
-
Reactive oxygen species
- ZnO
-
Zinc oxide
- TiO2
-
Titanium dioxide
- MgO
-
Magnesium oxide
- GO
-
Graphene oxide
- Cu
-
Copper
- Ag
-
Silver
- Fe3O4
-
Magnetite as catalysts
- Fe2O3
-
Hematite as catalysts
- SPIONs
-
Supra-paramagnetic iron oxide nanoparticles
- EPS
-
Extracellular polymeric substances
- PDT
-
Photodynamic therapy
- UV
-
Ultraviolet irradiation
- NPWT
-
Negative Pressure Wound Therapy
- LLLT
-
Low-level laser therapy
- LEDs
-
Low-intensity laser or light-emitting diodes
- ATP
-
Adenosine triphosphate
- HPWT
-
High-pressure wound therapy
- Nrf2
-
Nuclear factor erythroid 2-related factor 2
- MAPK
-
Mitogen-activated protein kinase
- SOD
-
Superoxide dismutase
- GSTs
-
Glutathione S-transferases
- NAD(P)H:
-
Quinone oxidoreductase 1
- TNF-alpha
-
Necrosis factor-alpha
- FGF
-
Fibroblast growth factor
- VEGF
-
Vascular endothelial growth factor
- PDGF
-
Platelet-derived growth factor
- TGF
-
Transforming growth factor-beta
- IL-1
-
Interleukin-1
- IL-6
-
Interleukin-6
- ECM
-
Extracellular matrix
- MMPs
-
Matrix metalloproteinases
- QSIs
-
Quorum sensing inhibitors
- QS
-
Quorum sensing
- EDTA
-
Ethylenediaminetetraacetic acid
- PEGs
-
Polyethene glycols
- SLS
-
Sodium lauryl sulfate
- SDS
-
Sodium dodecyl sulfate
- BAC
-
Benzalkonium chloride
- CAPB
-
Cocamidopropyl betaine
- COOH
-
Carboxyl group
- MRSA
-
Methicillin-resistant Staphylococcus aureus
- disodium EDTA
-
Disodium-ethylene-diamine tetraacetate
- NO
-
Nitric oxide
- GAGs
-
Glycosaminoglycans
- NAC
-
N-acetylcysteine
- HBT
-
Hyperbaric oxygen therapy
- BNC
-
Bacterial nanocellulose
References
[1] F. Diban, S. Di Lodovico, P. Di Fermo, S. D’Ercole, S. D’Arcangelo, M. Di Giulio, L. Cellini. Int. J. Mol. Sci. 24(2), 1004 (2023), https://doi.org/10.3390/ijms24021004.Suche in Google Scholar PubMed PubMed Central
[2] D. Sharma, L. Misba, A. U. Khan. Antimicrob. Resist. Infect. Control 8(1), 1 (2019), https://doi.org/10.1186/s13756-019-0533-3.Suche in Google Scholar PubMed PubMed Central
[3] L. Atkin. Br. J. Community Nurs. 24, S26 (2019), https://doi.org/10.12968/bjcn.2019.24.sup9.s26.Suche in Google Scholar
[4] R. Nunan, K. G. Harding, P. Martin. Dis. Models Mech. 7(11), 1205 (2014), https://doi.org/10.1242/dmm.016782.Suche in Google Scholar PubMed PubMed Central
[5] M. Mahmoudi, L. J. Gould. Chronic Wound Care Manag. Res. 7, 27 (2020), https://doi.org/10.2147/cwcmr.s260136.Suche in Google Scholar
[6] T. R. Johnson, B. I. Gómez, M. K. McIntyre, M. A. Dubick, R. J. Christy, S. E. Nicholson, D. M. Burmeister. Int. J. Mol. Sci. 19(9), 2699 (2018), https://doi.org/10.3390/ijms19092699.Suche in Google Scholar PubMed PubMed Central
[7] J. M. Tessier, J. Sanders, M. Sartelli, J. Ulrych, B. De Simone, J. Grabowski, T. M. Duane. Surg. Infect. 21(2), 81 (2020), https://doi.org/10.1089/sur.2019.219.Suche in Google Scholar PubMed
[8] E. R. Bray, A. R. Oropallo, D. A. Grande, R. S. Kirsner, E. V. Badiavas. Pharmaceutics 13(10), 1543 (2021), https://doi.org/10.3390/pharmaceutics13101543.Suche in Google Scholar PubMed PubMed Central
[9] J. K. Kilcullen, Q. P. Ly, T. H. Chang, S. M. Levenson, J. J. Steinberg. Wound Repair Regen. 6(2), 149 (1998), https://doi.org/10.1046/j.1524-475x.1998.60209.x.Suche in Google Scholar PubMed
[10] B. Yu, Z. Wang, L. Almutairi, S. Huang, M. H. Kim. Nanomed. Nanotechnol. Biol. Med. 24, 102158 (2020), https://doi.org/10.1016/j.nano.2020.102158.Suche in Google Scholar PubMed PubMed Central
[11] C. Y. Okumura, A. Hollands, D. N. Tran, J. Olson, S. Dahesh, M. von Köckritz-Blickwede, W. Thienphrapa, C. Corle, S. N. Jeung, A. Kotsakis, R. A. Shalwitz, R. S. Johnson, V. Nizet. J. Mol. Med. 90, 1079 (2012), https://doi.org/10.1007/s00109-012-0882-3.Suche in Google Scholar PubMed PubMed Central
[12] U. A. Okonkwo, L. A. DiPietro. Int. J. Mol. Sci. 18(7), 1419 (2017), https://doi.org/10.3390/ijms18071419.Suche in Google Scholar PubMed PubMed Central
[13] K. McDermott, M. Fang, A. J. Boulton, E. Selvin, C. W. Hicks. Diabetes Care 46(1), 209 (2023), https://doi.org/10.2337/dci22-0043.Suche in Google Scholar PubMed PubMed Central
[14] Y. Liu, L. Shi, L. Su, H. C. van der Mei, P. C. Jutte, Y. Ren, H. J. Busscher. Chem. Soc. Rev. 48(2), 428 (2019), https://doi.org/10.1039/c7cs00807d.Suche in Google Scholar PubMed
[15] Y. Xi, Y. Wang, J. Gao, Y. Xiao, J. Du. ACS Nano 13(12), 13645 (2019), https://doi.org/10.1021/acsnano.9b03237.Suche in Google Scholar PubMed
[16] Y. Yu, T. Zhang, X. Dai, X. Dai, X. Wei, X. Zhang, C. Li. Chem. Commun. 54(90), 12754 (2018), https://doi.org/10.1039/c8cc06398b.Suche in Google Scholar PubMed
[17] C. E. Edmiston Jr, A. J. McBain, C. Roberts, D. Leaper. Biofilm-Healthc. Assoc. Infect. Vol. I 830, 47 (2014), https://doi.org/10.1007/978-3-319-11038-7_3.Suche in Google Scholar PubMed
[18] D. Leaper, O. Assadian, C. E. Edmiston. Br. J. Dermatol. 173(2), 351 (2015), https://doi.org/10.1111/bjd.13677.Suche in Google Scholar PubMed
[19] F. N. Rosyid. Int. J. Res. Med. Sci. 5(10), 4206 (2017), https://doi.org/10.18203/2320-6012.ijrms20174548.Suche in Google Scholar
[20] A. W. Smith. Adv. Drug Del. Rev. 57(10), 1539 (2005), https://doi.org/10.1016/j.addr.2005.04.007.Suche in Google Scholar PubMed
[21] S. Liu, C. Z. He, Y. T. Cai, Q. P. Xing, Y. Z. Guo, Z. L. Chen, J. L. Su, L. P. Yang. Therap. Clin. Risk Manag. 18, 533 (2017), https://doi.org/10.2147/tcrm.s131193.Suche in Google Scholar PubMed PubMed Central
[22] S. M. Manewell, S. J. Aitken, V. L. Nube, A. M. Crawford, M. I. Constantino, S. M. Twigg, H. B. Menz, C. Sherrington, S. S. Paul. Wound Pract. Res. J. Australian Wound Manag. Assoc. 30(2), 82 (2022), https://doi.org/10.33235/wpr.30.2.82-90.Suche in Google Scholar
[23] J. L. Lázaro-Martínez, F. J. Álvaro-Afonso, Y. García-Álvarez, R. J. Molines-Barroso, E. García-Morales, D. Sevillano-Fernández. J. Wound Care 27(5), 278 (2018), https://doi.org/10.12968/jowc.2018.27.5.278.Suche in Google Scholar PubMed
[24] J. A. Marvin. J. Burn Care Rehabil. 16(suppl_3_pt_2), 348 (1995), https://doi.org/10.1097/00004630-199505001-00003.Suche in Google Scholar PubMed
[25] W. Pa. in Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20, Clinical and Laboratory Standards Institute, USA (2010).Suche in Google Scholar
[26] A. Damir. JIMSA 24(4), 219 (2011).10.1111/j.1432-2277.2010.01213.xSuche in Google Scholar
[27] S. L. Percival, I. Francolini, G. Donelli. Future Microbiol. 10(2), 255 (2015), https://doi.org/10.2217/fmb.14.109.Suche in Google Scholar PubMed
[28] V. T. Anju, S. Busi, M. Dyavaiah. Applications of photodynamic therapy for the eradication of ESKAPE pathogens. In ESKAPE pathogens, S. Busi, R. Prasad (Eds.), Springer, Singapore (2024).10.1007/978-981-99-8799-3_15Suche in Google Scholar
[29] R. L. Moses, T. A. Prescott, E. Mas-Claret, R. Steadman, R. Moseley, A. J. Sloan. Biomolecules 13(3), 444 (2023), https://doi.org/10.3390/biom13030444.Suche in Google Scholar PubMed PubMed Central
[30] R. K. Ulrey, S. M. Barksdale, W. Zhou, M. L. van Hoek. BMC Compl. Alternative Med. 14(1), 1 (2014), https://doi.org/10.1186/1472-6882-14-499.Suche in Google Scholar PubMed PubMed Central
[31] Z. Qin, Y. Ou, L. Yang, Y. Zhu, T. Tolker-Nielsen, S. Molin, D. Qu. Microbiology 153(7), 2083 (2007), https://doi.org/10.1099/mic.0.2007/006031-0.Suche in Google Scholar PubMed
[32] N. Ramasubbu, L. M. Thomas, C. Ragunath, J. B. Kaplan. J. Mol. Biol. 349(3), 475 (2005), https://doi.org/10.1016/j.jmb.2005.03.082.Suche in Google Scholar PubMed
[33] J. Coronel‐León, A. M. Marqués, J. Bastida, A. Manresa. J. Appl. Microbiol. 120(1), 99 (2016), https://doi.org/10.1111/jam.12992.Suche in Google Scholar PubMed
[34] J. M. Dow, L. Crossman, K. Findlay, Y. Q. He, J. X. Feng, J. L. Tang. Proc. Natl. Acad. Sci. U. S. A. 100(19), 10995 (2003), https://doi.org/10.1073/pnas.1833360100.Suche in Google Scholar PubMed PubMed Central
[35] S. L. Percival, P. Kite, K. Eastwood, R. Murga, J. Carr, M. J. Arduino, R. M. Donlan. Infect. Control Hosp. Epidemiol. 26(6), 515 (2005), https://doi.org/10.1086/502577.Suche in Google Scholar PubMed
[36] S. Santhakumari, N. M. Nilofernisha, J. G. Ponraj, S. K. Pandian, A. V. Ravi. J. Invertebrate Pathol. 150, 21 (2017), https://doi.org/10.1016/j.jip.2017.09.001.Suche in Google Scholar PubMed
[37] A. C. Anselmo, S. Mitragotri. AAPS J. 17, 1041 (2015), https://doi.org/10.1208/s12248-015-9780-2.Suche in Google Scholar PubMed PubMed Central
[38] M. Colombo, S. Carregal-Romero, M. F. Casula, L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen, D. Prosperi, W. J. Parak. Chem. Soc. Rev. 41(11), 4306 (2012), https://doi.org/10.1039/c2cs15337h.Suche in Google Scholar PubMed
[39] M. Fazli, T. Bjarnsholt, K. Kirketerp-Møller, B. Jørgensen, A. S. Andersen, K. A. Krogfelt, M. Givskov, T. Tolker-Nielsen. J. Clin. Microbiol. 47(12), 4084 (2009), https://doi.org/10.1128/jcm.01395-09.Suche in Google Scholar PubMed PubMed Central
[40] L. Gao, K. Fan, X. Yan. Theranostics 7(13), 3207 (2017), https://doi.org/10.7150/thno.19738.Suche in Google Scholar PubMed PubMed Central
[41] L. Zhu, Z. Zhou, H. Mao, L. Yang. Nanomedicine 12(1), 73 (2017), https://doi.org/10.2217/nnm-2016-0316.Suche in Google Scholar PubMed PubMed Central
[42] A. Borges, A. C. Abreu, C. Dias, M. J. Saavedra, F. Borges, M. Simões. Molecules 21(7), 877 (2016), https://doi.org/10.3390/molecules21070877.Suche in Google Scholar PubMed PubMed Central
[43] D. Gao, Y. Zhang, D. T. Bowers, W. Liu, M. Ma. APL Bioeng. 5(3), 031503 (2021), https://doi.org/10.1063/5.0046682.Suche in Google Scholar PubMed PubMed Central
[44] S. Martinez-Conde, S. L. Macknik. Proc. Natl. Acad. Sci. U. S. A. 114(31), 8127 (2017), https://doi.org/10.1073/pnas.1711790114.Suche in Google Scholar PubMed PubMed Central
[45] B. Kot, K. Wierzchowska, A. Grużewska, D. Lohinau. Nat. Prod. Res. 32(11), 1299 (2018), https://doi.org/10.1080/14786419.2017.1340282.Suche in Google Scholar PubMed
[46] M. Simoes, R. N. Bennett, E. A. Rosa. Nat. Prod. Rep. 26(6), 746 (2009), https://doi.org/10.1039/b821648g.Suche in Google Scholar PubMed
[47] Y. Wang, Y. L. Dai, J. L. Piao, C. J. Liu, M. M. Li, L. P. Jiang. Zhongguo Ying Yong Sheng li xue za zhi= Zhongguo Yingyong Shenglixue Zazhi= Chinese J. Appl. Physiol. 33(2), 181 (2017), https://doi.org/10.12047/j.cjap.5425.2017.046.Suche in Google Scholar PubMed
[48] A. Warrier, N. Mazumder, S. Prabhu, K. Satyamoorthy, T. S. Murali. Photodiagnosis Photodyn. Ther. 33, 102090 (2021), https://doi.org/10.1016/j.pdpdt.2020.102090.Suche in Google Scholar PubMed
[49] S. C. Davis, L. Martinez, R. Kirsner. Curr. Diabetes Rep. 6(6), 439 (2006), https://doi.org/10.1007/s11892-006-0076-x.Suche in Google Scholar PubMed
[50] L. D. Melo, N. F. Azevedo. Antibiotics 10(4), 407 (2021), https://doi.org/10.3390/antibiotics10040407.Suche in Google Scholar PubMed PubMed Central
[51] I. R. Sweeney, M. Miraftab, G. Collyer. Int. Wound J. 9(6), 601 (2012), https://doi.org/10.1111/j.1742-481x.2011.00923.x.Suche in Google Scholar
[52] M. Yasir, M. D. Willcox, D. Dutta. Materials 11(12), 2468 (2018), https://doi.org/10.3390/ma11122468.Suche in Google Scholar PubMed PubMed Central
[53] S. Coon. Mitigating diabetic foot ulcers: the effect of diet and microbiome, in Diabetic Foot-Recent Advances, IntechOpen, London, UK (2022).10.5772/intechopen.106629Suche in Google Scholar
[54] Y. Fan, F. Namata, J. Erlandsson, Y. Zhang, L. Wågberg, M. Malkovich. Pharmaceutics 12(12), 1139 (2020), https://doi.org/10.3390/pharmaceutics12121139.Suche in Google Scholar PubMed PubMed Central
[55] S. Finnegan, S. L. Percival. Adv. Wound Care 4(7), 415 (2015), https://doi.org/10.1089/wound.2014.0577.Suche in Google Scholar PubMed PubMed Central
[56] S. L. Percival, R. Chen, D. Mayer, A. M. Salisbury. Int. Wound J. 15(5), 749 (2018), https://doi.org/10.1111/iwj.12922.Suche in Google Scholar PubMed PubMed Central
[57] L. G. Egorova, I. E. Okonishnikova, V. L. Nirenburg, I. Y. Postovskii. Pharmaceut. Chem. J. 5, 23 (1971), https://doi.org/10.1007/bf00760842.Suche in Google Scholar
[58] Y. Qiang, J. Antony, A. Sharma, J. Nutting, D. Sikes, D. Meyer. J. Nanopart. Res. 8, 489 (2006), https://doi.org/10.1007/s11051-005-9011-3.Suche in Google Scholar
[59] M. Malone, T. Swanson. Br. J. Community Nurs. 22(Sup6), S20 (2017), https://doi.org/10.12968/bjcn.2017.22.sup6.s20.Suche in Google Scholar PubMed
[60] T. W. Chang. Arch. Dermatol. 112(8), 1176 (1976), https://doi.org/10.1001/archderm.1976.01630320074028.Suche in Google Scholar
[61] L. Serpe, F. Giuntini. J. Photochem. Photobiol. B Biol. 150, 44 (2015), https://doi.org/10.1016/j.jphotobiol.2015.05.012.Suche in Google Scholar PubMed
[62] P. Kesharwani, B. Gorain, S. Y. Low, S. A. Tan, E. C. Ling, Y. K. Lim, C. M. Chin, P. Y. Lee, C. M. Lee, C. H. Ooi, H. Choudhury, M. Pandey. Diabetes Res. Clin. Pract. 136, 52 (2018), https://doi.org/10.1016/j.diabres.2017.11.018.Suche in Google Scholar PubMed
[63] S. J. Li, J. Fan, J. Zhou, Y. T. Ren, C. Shen, G. W. Che. Ann. Thoracic Surg. 102(1), 328 (2016), https://doi.org/10.1016/j.athoracsur.2016.01.013.Suche in Google Scholar PubMed
[64] Y. I. Shen, H. Cho, A. E. Papa, J. A. Burke, X. Y. Chan, E. J. Duh, S. Gerecht. Biomaterials 102, 107 (2016), https://doi.org/10.1016/j.biomaterials.2016.06.009.Suche in Google Scholar PubMed
[65] C. P. Reis, A. J. Ribeiro, S. Houng, F. Veiga, R. J. Neufeld. Eur. J. Pharm. Sci. 30(5), 392 (2007), https://doi.org/10.1016/j.ejps.2006.12.007.Suche in Google Scholar PubMed
[66] S. C. Wei, L. Chang, C. C. Huang, H. T. Chang. Biomater. Sci. 7(11), 4482 (2019), https://doi.org/10.1039/c9bm00772e.Suche in Google Scholar PubMed
[67] S. M. Ghaseminezhad, S. A. Shojaosadati, R. L. Meyer. Colloids Surf. B Biointerfaces 163, 192 (2018), https://doi.org/10.1016/j.colsurfb.2017.12.035.Suche in Google Scholar PubMed
[68] L. Grassi, G. Batoni, L. Ostyn, P. Rigole, S. Van den Bossche, A. C. Rinaldi, G. Maisetta, S. Esin, T. Coenye, A. Crabbé. Front. Microbiol. 10, 198 (2019), https://doi.org/10.3389/fmicb.2019.00198.Suche in Google Scholar PubMed PubMed Central
[69] M. Di Giulio, R. Zappacosta, S. Di Lodovico, E. Di Campli, G. Siani, A. Fontana, L. Cellini. Antimicrob. Agents Chemother. 62(7), 10 (2018), https://doi.org/10.1128/aac.00547-18.Suche in Google Scholar
[70] E. N. Taylor, K. M. Kummer, N. G. Durmus, K. Leuba, K. M. Tarquinio, T. J. Webster. Small 8(19), 3016 (2012), https://doi.org/10.1002/smll.201200575.Suche in Google Scholar PubMed
[71] W. Yantasee, C. L. Warner, T. Sangvanich, R. S. Addleman, T. G. Carter, R. J. Wiacek, G. E. Fryxell, C. Timchalk, M. G. Warner. Environ. Sci. Technol. 41(14), 5114 (2007), https://doi.org/10.1021/es0705238.Suche in Google Scholar PubMed
[72] S. Kappally, A. Shirwaikar, A. Shirwaikar. Hygeia JD Med. 7(2), 34 (2015).Suche in Google Scholar
[73] A. Abdoli, R. Shahbsazi, G. Zoghi, P. Davoodian, S. Kheirandish, M. Azad, M. Kheirandish. Diabetes Metabol. Syndr. Clin. Res. Rev. 16(12), 102678 (2022), https://doi.org/10.1016/j.dsx.2022.102678.Suche in Google Scholar PubMed
[74] V. A. Aneesha, A. Qayoom, S. Anagha, S. A. Almas, V. K. Naresh, S. Kumawat, D. Kumar. J. Tissue Viability 31(3), 474 (2022), https://doi.org/10.1016/j.jtv.2022.04.009.Suche in Google Scholar PubMed
[75] W. Han, B. Zhou, K. Yang, X. Xiong, S. Luan, Y. Wang, H. Xu. Bioactive Mater. 5(4), 768 (2020), https://doi.org/10.1016/j.bioactmat.2020.05.008.Suche in Google Scholar PubMed PubMed Central
[76] N. Barraud, D. Schleheck, J. Klebensberger, J. S. Webb, D. J. Hassett, S. A. Rice, S. Kjelleberg. J. Bacteriol. 191(23), 7333 (2009), https://doi.org/10.1128/jb.00975-09.Suche in Google Scholar PubMed PubMed Central
[77] M. Møller-Kristensen, W. K. Ip, L. Shi, L. D. Gowda, M. R. Hamblin, S. Thiel, K. Takahashi. J. Immunol. 176(3), 1769 (2006), https://doi.org/10.4049/jimmunol.176.3.1769.Suche in Google Scholar PubMed PubMed Central
[78] J. Melrose. Bone Tissue Regen. Insights 7, BTRI.S38670 (2016), https://doi.org/10.4137/btri.s38670.Suche in Google Scholar
[79] L. Gao, Y. Liu, D. Kim, Y. Li, G. Hwang, P. C. Naha, D. P. Cormode, H. Koo. Biomaterials 101, 272 (2016), https://doi.org/10.1016/j.biomaterials.2016.05.051.Suche in Google Scholar PubMed PubMed Central
[80] M. U. Akbar, K. M. Zia, M. S. H. Akash, A. Nazir, M. Zuber, M. Ibrahim. Int. J. Biol. Macromol. 120, 2418 (2018), https://doi.org/10.1016/j.ijbiomac.2018.09.010.Suche in Google Scholar PubMed
[81] C. Gong, Q. Wu, Y. Wang, D. Zhang, F. Luo, X. Zhao, Z. Qian. Biomaterials 34(27), 6377 (2013), https://doi.org/10.1016/j.biomaterials.2013.05.005.Suche in Google Scholar PubMed
[82] M. Puccetti, A. Donnadio, M. Ricci, L. Latterini, G. Quaglia, D. Pietrella, A. Di Michele, V. Ambrogi. J. Funct. Biomater. 14(2), 84 (2023), https://doi.org/10.3390/jfb14020084.Suche in Google Scholar PubMed PubMed Central
[83] C. Li, E. J. Cornel, J. Du. ACS Appl. Polym. Mater. 3(5), 2218 (2021), https://doi.org/10.1021/acsapm.1c00003.Suche in Google Scholar
[84] T. Wang, Y. Li, E. J. Cornel, C. Li, J. Du. ACS Nano 15(5), 9027 (2021), https://doi.org/10.1021/acsnano.1c02102.Suche in Google Scholar PubMed
[85] X. Liu, Z. Wang, X. Feng, E. Bai, Y. Xiong, X. Zhu, B. Shen, Y. Duan, Y. Huang. Bioconjugate Chem. 31(5), 1425 (2020), https://doi.org/10.1021/acs.bioconjchem.0c00121.Suche in Google Scholar PubMed
[86] L. Colobatiu, A. Gavan, A. V. Potarniche, V. Rus, Z. Diaconeasa, A. Mocan, I. Tomuta, S. Mirel, M. Mihaiu. React. Funct. Polym. 145, 104369 (2019), https://doi.org/10.1016/j.reactfunctpolym.2019.104369.Suche in Google Scholar
[87] X. Deng, X. Li, W. Chen, T. Zhao, W. Huang, H. Qian. Med. Chem. Res. 26, 580 (2017), https://doi.org/10.1007/s00044-016-1777-6.Suche in Google Scholar
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Special topic papers
- An innovative method using data acquisition and MATLAB for the electrochemical oxidation of formalin and the conversion of the oxidized products into a sound signal
- Evaluation of in vitro antioxidant activities, total phenolic and elemental contents of common herbs and spices (Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves) in South-West Nigeria
- Management of biofilm-associated infections in diabetic wounds – from bench to bedside
- Biodegradation of naphthalene using Kocuria rosea isolated from a Sawmill in Ikenne, Southwestern Nigeria
- Production of green hydrogen through PEM water electrolysis
- Synthesis of potash alum from waste aluminum cans for the purification of river water
- Current advances in QuEChERS extraction of mycotoxins in various food and feed matrices
- Biological potentials of Landolphia owariensis leaf methanolic extract against pathogenic fungi isolates from different Dioscorea species
- Nitrogen leaching mitigation by tithonia biochar (Tithochar) in urea fertilizer treated sandy soil
- Phytochemicals as potential active principal components for formulation of alternative antifungal remedies against Trichophyton spp.: a systematic review
- A review on the green chemistry perspective of multipurpose use of cow urine
- Reactions of trans-[PtX2(pic)2] (Pic = γ-PICOLINE, X = Cl−, NO3 −) with N-acetyl-l-cysteine and glutathione
Artikel in diesem Heft
- Frontmatter
- In this issue
- Special topic papers
- An innovative method using data acquisition and MATLAB for the electrochemical oxidation of formalin and the conversion of the oxidized products into a sound signal
- Evaluation of in vitro antioxidant activities, total phenolic and elemental contents of common herbs and spices (Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves) in South-West Nigeria
- Management of biofilm-associated infections in diabetic wounds – from bench to bedside
- Biodegradation of naphthalene using Kocuria rosea isolated from a Sawmill in Ikenne, Southwestern Nigeria
- Production of green hydrogen through PEM water electrolysis
- Synthesis of potash alum from waste aluminum cans for the purification of river water
- Current advances in QuEChERS extraction of mycotoxins in various food and feed matrices
- Biological potentials of Landolphia owariensis leaf methanolic extract against pathogenic fungi isolates from different Dioscorea species
- Nitrogen leaching mitigation by tithonia biochar (Tithochar) in urea fertilizer treated sandy soil
- Phytochemicals as potential active principal components for formulation of alternative antifungal remedies against Trichophyton spp.: a systematic review
- A review on the green chemistry perspective of multipurpose use of cow urine
- Reactions of trans-[PtX2(pic)2] (Pic = γ-PICOLINE, X = Cl−, NO3 −) with N-acetyl-l-cysteine and glutathione