Startseite Management of biofilm-associated infections in diabetic wounds – from bench to bedside
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Management of biofilm-associated infections in diabetic wounds – from bench to bedside

  • Subhasri Bogadi , Pooja Rao , Vasudha KU , Gowthamarajan Kuppusamy , SubbaRao V. Madhunapantula , Vetriselvan Subramaniyan , Veera Venkata Satyanarayana Reddy Karri EMAIL logo und Jamuna Bai Aswathanarayan EMAIL logo
Veröffentlicht/Copyright: 14. Mai 2024

Abstract

Biofilms are complex bacterial colonies embedded in an extracellular matrix. These pose a major obstacle to wound healing and are noticeable in chronic wounds. It protects the bacteria from the host’s immune system and conventional antibiotic treatments. The biofilm’s protective matrix prevents essential nutrients and oxygen from diffusing into the surrounding healthy tissue. In addition, microbes living in biofilms naturally have increased resistance to antibiotics, which reduces the effectiveness of traditional therapies. As such, biofilms serve as persistent reservoirs of infection, which further disrupts the normal course of wound healing. In this review, the current formulation strategies such as hydrogels, polymeric nanoparticles, and nanofibers that are used in wound healing to counteract biofilms have been comprehensively discussed. The formulations have been meticulously designed and developed to disturb the biofilm matrix, prevent the growth of microorganisms, and increase the potency of antimicrobials and antibiotics. The mechanism of action, advantages and limitations associated with the existing formulation strategies have been reviewed. The formulation strategies that have been translated into clinical applications and patented are also discussed in this paper.


Corresponding authors: Veera Venkata Satyanarayana Reddy Karri, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu – 643001, India, e-mail: ; and Jamuna Bai Aswathanarayan, Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka – 570015, India, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023.

Acknowledgments

The authors would like to thank the UGC BSR Start-up Research Grant, Department of Science and Technology – Fund for Improvement of Science and Technology Infrastructure (DST-FIST), Promotion of University Research and Scientific Excellence (DST-PURSE), SIG In Biofilms in Clinical Settings & their Control, JSS AHER for the facilities provided for conducting the research.

  1. Research funding: The authors, Ms. Bogadi Subhasri, wish to express their gratitude to the Department of Science and Technology (DST-INSPIRE) Fellowship (ID IF200201) application reference no DST/INSPIRE/03/20 21/001920. New Delhi and technically approved by ICMR (Indian council of medical research) with Fellowship ID 2021–8531. The authors would like to acknowledge JSS AHER for the SIG grant – Biofilms in Clinical Settings & their Control and to UGC-BSR for Start-up Research Grant.

Abbreviations

PRRs

Pattern recognition receptors

PAMPs

Pathogen-associated molecular patterns

TLRs

Toll-like receptors

NLRs

NOD-like receptors

CLRs

C-type lectin receptors

ROS

Reactive oxygen species

ZnO

Zinc oxide

TiO2

Titanium dioxide

MgO

Magnesium oxide

GO

Graphene oxide

Cu

Copper

Ag

Silver

Fe3O4

Magnetite as catalysts

Fe2O3

Hematite as catalysts

SPIONs

Supra-paramagnetic iron oxide nanoparticles

EPS

Extracellular polymeric substances

PDT

Photodynamic therapy

UV

Ultraviolet irradiation

NPWT

Negative Pressure Wound Therapy

LLLT

Low-level laser therapy

LEDs

Low-intensity laser or light-emitting diodes

ATP

Adenosine triphosphate

HPWT

High-pressure wound therapy

Nrf2

Nuclear factor erythroid 2-related factor 2

MAPK

Mitogen-activated protein kinase

SOD

Superoxide dismutase

GSTs

Glutathione S-transferases

NAD(P)H:

Quinone oxidoreductase 1

TNF-alpha

Necrosis factor-alpha

FGF

Fibroblast growth factor

VEGF

Vascular endothelial growth factor

PDGF

Platelet-derived growth factor

TGF

Transforming growth factor-beta

IL-1

Interleukin-1

IL-6

Interleukin-6

ECM

Extracellular matrix

MMPs

Matrix metalloproteinases

QSIs

Quorum sensing inhibitors

QS

Quorum sensing

EDTA

Ethylenediaminetetraacetic acid

PEGs

Polyethene glycols

SLS

Sodium lauryl sulfate

SDS

Sodium dodecyl sulfate

BAC

Benzalkonium chloride

CAPB

Cocamidopropyl betaine

COOH

Carboxyl group

MRSA

Methicillin-resistant Staphylococcus aureus

disodium EDTA

Disodium-ethylene-diamine tetraacetate

NO

Nitric oxide

GAGs

Glycosaminoglycans

NAC

N-acetylcysteine

HBT

Hyperbaric oxygen therapy

BNC

Bacterial nanocellulose

References

[1] F. Diban, S. Di Lodovico, P. Di Fermo, S. D’Ercole, S. D’Arcangelo, M. Di Giulio, L. Cellini. Int. J. Mol. Sci. 24(2), 1004 (2023), https://doi.org/10.3390/ijms24021004.Suche in Google Scholar PubMed PubMed Central

[2] D. Sharma, L. Misba, A. U. Khan. Antimicrob. Resist. Infect. Control 8(1), 1 (2019), https://doi.org/10.1186/s13756-019-0533-3.Suche in Google Scholar PubMed PubMed Central

[3] L. Atkin. Br. J. Community Nurs. 24, S26 (2019), https://doi.org/10.12968/bjcn.2019.24.sup9.s26.Suche in Google Scholar

[4] R. Nunan, K. G. Harding, P. Martin. Dis. Models Mech. 7(11), 1205 (2014), https://doi.org/10.1242/dmm.016782.Suche in Google Scholar PubMed PubMed Central

[5] M. Mahmoudi, L. J. Gould. Chronic Wound Care Manag. Res. 7, 27 (2020), https://doi.org/10.2147/cwcmr.s260136.Suche in Google Scholar

[6] T. R. Johnson, B. I. Gómez, M. K. McIntyre, M. A. Dubick, R. J. Christy, S. E. Nicholson, D. M. Burmeister. Int. J. Mol. Sci. 19(9), 2699 (2018), https://doi.org/10.3390/ijms19092699.Suche in Google Scholar PubMed PubMed Central

[7] J. M. Tessier, J. Sanders, M. Sartelli, J. Ulrych, B. De Simone, J. Grabowski, T. M. Duane. Surg. Infect. 21(2), 81 (2020), https://doi.org/10.1089/sur.2019.219.Suche in Google Scholar PubMed

[8] E. R. Bray, A. R. Oropallo, D. A. Grande, R. S. Kirsner, E. V. Badiavas. Pharmaceutics 13(10), 1543 (2021), https://doi.org/10.3390/pharmaceutics13101543.Suche in Google Scholar PubMed PubMed Central

[9] J. K. Kilcullen, Q. P. Ly, T. H. Chang, S. M. Levenson, J. J. Steinberg. Wound Repair Regen. 6(2), 149 (1998), https://doi.org/10.1046/j.1524-475x.1998.60209.x.Suche in Google Scholar PubMed

[10] B. Yu, Z. Wang, L. Almutairi, S. Huang, M. H. Kim. Nanomed. Nanotechnol. Biol. Med. 24, 102158 (2020), https://doi.org/10.1016/j.nano.2020.102158.Suche in Google Scholar PubMed PubMed Central

[11] C. Y. Okumura, A. Hollands, D. N. Tran, J. Olson, S. Dahesh, M. von Köckritz-Blickwede, W. Thienphrapa, C. Corle, S. N. Jeung, A. Kotsakis, R. A. Shalwitz, R. S. Johnson, V. Nizet. J. Mol. Med. 90, 1079 (2012), https://doi.org/10.1007/s00109-012-0882-3.Suche in Google Scholar PubMed PubMed Central

[12] U. A. Okonkwo, L. A. DiPietro. Int. J. Mol. Sci. 18(7), 1419 (2017), https://doi.org/10.3390/ijms18071419.Suche in Google Scholar PubMed PubMed Central

[13] K. McDermott, M. Fang, A. J. Boulton, E. Selvin, C. W. Hicks. Diabetes Care 46(1), 209 (2023), https://doi.org/10.2337/dci22-0043.Suche in Google Scholar PubMed PubMed Central

[14] Y. Liu, L. Shi, L. Su, H. C. van der Mei, P. C. Jutte, Y. Ren, H. J. Busscher. Chem. Soc. Rev. 48(2), 428 (2019), https://doi.org/10.1039/c7cs00807d.Suche in Google Scholar PubMed

[15] Y. Xi, Y. Wang, J. Gao, Y. Xiao, J. Du. ACS Nano 13(12), 13645 (2019), https://doi.org/10.1021/acsnano.9b03237.Suche in Google Scholar PubMed

[16] Y. Yu, T. Zhang, X. Dai, X. Dai, X. Wei, X. Zhang, C. Li. Chem. Commun. 54(90), 12754 (2018), https://doi.org/10.1039/c8cc06398b.Suche in Google Scholar PubMed

[17] C. E. Edmiston Jr, A. J. McBain, C. Roberts, D. Leaper. Biofilm-Healthc. Assoc. Infect. Vol. I 830, 47 (2014), https://doi.org/10.1007/978-3-319-11038-7_3.Suche in Google Scholar PubMed

[18] D. Leaper, O. Assadian, C. E. Edmiston. Br. J. Dermatol. 173(2), 351 (2015), https://doi.org/10.1111/bjd.13677.Suche in Google Scholar PubMed

[19] F. N. Rosyid. Int. J. Res. Med. Sci. 5(10), 4206 (2017), https://doi.org/10.18203/2320-6012.ijrms20174548.Suche in Google Scholar

[20] A. W. Smith. Adv. Drug Del. Rev. 57(10), 1539 (2005), https://doi.org/10.1016/j.addr.2005.04.007.Suche in Google Scholar PubMed

[21] S. Liu, C. Z. He, Y. T. Cai, Q. P. Xing, Y. Z. Guo, Z. L. Chen, J. L. Su, L. P. Yang. Therap. Clin. Risk Manag. 18, 533 (2017), https://doi.org/10.2147/tcrm.s131193.Suche in Google Scholar PubMed PubMed Central

[22] S. M. Manewell, S. J. Aitken, V. L. Nube, A. M. Crawford, M. I. Constantino, S. M. Twigg, H. B. Menz, C. Sherrington, S. S. Paul. Wound Pract. Res. J. Australian Wound Manag. Assoc. 30(2), 82 (2022), https://doi.org/10.33235/wpr.30.2.82-90.Suche in Google Scholar

[23] J. L. Lázaro-Martínez, F. J. Álvaro-Afonso, Y. García-Álvarez, R. J. Molines-Barroso, E. García-Morales, D. Sevillano-Fernández. J. Wound Care 27(5), 278 (2018), https://doi.org/10.12968/jowc.2018.27.5.278.Suche in Google Scholar PubMed

[24] J. A. Marvin. J. Burn Care Rehabil. 16(suppl_3_pt_2), 348 (1995), https://doi.org/10.1097/00004630-199505001-00003.Suche in Google Scholar PubMed

[25] W. Pa. in Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20, Clinical and Laboratory Standards Institute, USA (2010).Suche in Google Scholar

[26] A. Damir. JIMSA 24(4), 219 (2011).10.1111/j.1432-2277.2010.01213.xSuche in Google Scholar

[27] S. L. Percival, I. Francolini, G. Donelli. Future Microbiol. 10(2), 255 (2015), https://doi.org/10.2217/fmb.14.109.Suche in Google Scholar PubMed

[28] V. T. Anju, S. Busi, M. Dyavaiah. Applications of photodynamic therapy for the eradication of ESKAPE pathogens. In ESKAPE pathogens, S. Busi, R. Prasad (Eds.), Springer, Singapore (2024).10.1007/978-981-99-8799-3_15Suche in Google Scholar

[29] R. L. Moses, T. A. Prescott, E. Mas-Claret, R. Steadman, R. Moseley, A. J. Sloan. Biomolecules 13(3), 444 (2023), https://doi.org/10.3390/biom13030444.Suche in Google Scholar PubMed PubMed Central

[30] R. K. Ulrey, S. M. Barksdale, W. Zhou, M. L. van Hoek. BMC Compl. Alternative Med. 14(1), 1 (2014), https://doi.org/10.1186/1472-6882-14-499.Suche in Google Scholar PubMed PubMed Central

[31] Z. Qin, Y. Ou, L. Yang, Y. Zhu, T. Tolker-Nielsen, S. Molin, D. Qu. Microbiology 153(7), 2083 (2007), https://doi.org/10.1099/mic.0.2007/006031-0.Suche in Google Scholar PubMed

[32] N. Ramasubbu, L. M. Thomas, C. Ragunath, J. B. Kaplan. J. Mol. Biol. 349(3), 475 (2005), https://doi.org/10.1016/j.jmb.2005.03.082.Suche in Google Scholar PubMed

[33] J. Coronel‐León, A. M. Marqués, J. Bastida, A. Manresa. J. Appl. Microbiol. 120(1), 99 (2016), https://doi.org/10.1111/jam.12992.Suche in Google Scholar PubMed

[34] J. M. Dow, L. Crossman, K. Findlay, Y. Q. He, J. X. Feng, J. L. Tang. Proc. Natl. Acad. Sci. U. S. A. 100(19), 10995 (2003), https://doi.org/10.1073/pnas.1833360100.Suche in Google Scholar PubMed PubMed Central

[35] S. L. Percival, P. Kite, K. Eastwood, R. Murga, J. Carr, M. J. Arduino, R. M. Donlan. Infect. Control Hosp. Epidemiol. 26(6), 515 (2005), https://doi.org/10.1086/502577.Suche in Google Scholar PubMed

[36] S. Santhakumari, N. M. Nilofernisha, J. G. Ponraj, S. K. Pandian, A. V. Ravi. J. Invertebrate Pathol. 150, 21 (2017), https://doi.org/10.1016/j.jip.2017.09.001.Suche in Google Scholar PubMed

[37] A. C. Anselmo, S. Mitragotri. AAPS J. 17, 1041 (2015), https://doi.org/10.1208/s12248-015-9780-2.Suche in Google Scholar PubMed PubMed Central

[38] M. Colombo, S. Carregal-Romero, M. F. Casula, L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen, D. Prosperi, W. J. Parak. Chem. Soc. Rev. 41(11), 4306 (2012), https://doi.org/10.1039/c2cs15337h.Suche in Google Scholar PubMed

[39] M. Fazli, T. Bjarnsholt, K. Kirketerp-Møller, B. Jørgensen, A. S. Andersen, K. A. Krogfelt, M. Givskov, T. Tolker-Nielsen. J. Clin. Microbiol. 47(12), 4084 (2009), https://doi.org/10.1128/jcm.01395-09.Suche in Google Scholar PubMed PubMed Central

[40] L. Gao, K. Fan, X. Yan. Theranostics 7(13), 3207 (2017), https://doi.org/10.7150/thno.19738.Suche in Google Scholar PubMed PubMed Central

[41] L. Zhu, Z. Zhou, H. Mao, L. Yang. Nanomedicine 12(1), 73 (2017), https://doi.org/10.2217/nnm-2016-0316.Suche in Google Scholar PubMed PubMed Central

[42] A. Borges, A. C. Abreu, C. Dias, M. J. Saavedra, F. Borges, M. Simões. Molecules 21(7), 877 (2016), https://doi.org/10.3390/molecules21070877.Suche in Google Scholar PubMed PubMed Central

[43] D. Gao, Y. Zhang, D. T. Bowers, W. Liu, M. Ma. APL Bioeng. 5(3), 031503 (2021), https://doi.org/10.1063/5.0046682.Suche in Google Scholar PubMed PubMed Central

[44] S. Martinez-Conde, S. L. Macknik. Proc. Natl. Acad. Sci. U. S. A. 114(31), 8127 (2017), https://doi.org/10.1073/pnas.1711790114.Suche in Google Scholar PubMed PubMed Central

[45] B. Kot, K. Wierzchowska, A. Grużewska, D. Lohinau. Nat. Prod. Res. 32(11), 1299 (2018), https://doi.org/10.1080/14786419.2017.1340282.Suche in Google Scholar PubMed

[46] M. Simoes, R. N. Bennett, E. A. Rosa. Nat. Prod. Rep. 26(6), 746 (2009), https://doi.org/10.1039/b821648g.Suche in Google Scholar PubMed

[47] Y. Wang, Y. L. Dai, J. L. Piao, C. J. Liu, M. M. Li, L. P. Jiang. Zhongguo Ying Yong Sheng li xue za zhi= Zhongguo Yingyong Shenglixue Zazhi= Chinese J. Appl. Physiol. 33(2), 181 (2017), https://doi.org/10.12047/j.cjap.5425.2017.046.Suche in Google Scholar PubMed

[48] A. Warrier, N. Mazumder, S. Prabhu, K. Satyamoorthy, T. S. Murali. Photodiagnosis Photodyn. Ther. 33, 102090 (2021), https://doi.org/10.1016/j.pdpdt.2020.102090.Suche in Google Scholar PubMed

[49] S. C. Davis, L. Martinez, R. Kirsner. Curr. Diabetes Rep. 6(6), 439 (2006), https://doi.org/10.1007/s11892-006-0076-x.Suche in Google Scholar PubMed

[50] L. D. Melo, N. F. Azevedo. Antibiotics 10(4), 407 (2021), https://doi.org/10.3390/antibiotics10040407.Suche in Google Scholar PubMed PubMed Central

[51] I. R. Sweeney, M. Miraftab, G. Collyer. Int. Wound J. 9(6), 601 (2012), https://doi.org/10.1111/j.1742-481x.2011.00923.x.Suche in Google Scholar

[52] M. Yasir, M. D. Willcox, D. Dutta. Materials 11(12), 2468 (2018), https://doi.org/10.3390/ma11122468.Suche in Google Scholar PubMed PubMed Central

[53] S. Coon. Mitigating diabetic foot ulcers: the effect of diet and microbiome, in Diabetic Foot-Recent Advances, IntechOpen, London, UK (2022).10.5772/intechopen.106629Suche in Google Scholar

[54] Y. Fan, F. Namata, J. Erlandsson, Y. Zhang, L. Wågberg, M. Malkovich. Pharmaceutics 12(12), 1139 (2020), https://doi.org/10.3390/pharmaceutics12121139.Suche in Google Scholar PubMed PubMed Central

[55] S. Finnegan, S. L. Percival. Adv. Wound Care 4(7), 415 (2015), https://doi.org/10.1089/wound.2014.0577.Suche in Google Scholar PubMed PubMed Central

[56] S. L. Percival, R. Chen, D. Mayer, A. M. Salisbury. Int. Wound J. 15(5), 749 (2018), https://doi.org/10.1111/iwj.12922.Suche in Google Scholar PubMed PubMed Central

[57] L. G. Egorova, I. E. Okonishnikova, V. L. Nirenburg, I. Y. Postovskii. Pharmaceut. Chem. J. 5, 23 (1971), https://doi.org/10.1007/bf00760842.Suche in Google Scholar

[58] Y. Qiang, J. Antony, A. Sharma, J. Nutting, D. Sikes, D. Meyer. J. Nanopart. Res. 8, 489 (2006), https://doi.org/10.1007/s11051-005-9011-3.Suche in Google Scholar

[59] M. Malone, T. Swanson. Br. J. Community Nurs. 22(Sup6), S20 (2017), https://doi.org/10.12968/bjcn.2017.22.sup6.s20.Suche in Google Scholar PubMed

[60] T. W. Chang. Arch. Dermatol. 112(8), 1176 (1976), https://doi.org/10.1001/archderm.1976.01630320074028.Suche in Google Scholar

[61] L. Serpe, F. Giuntini. J. Photochem. Photobiol. B Biol. 150, 44 (2015), https://doi.org/10.1016/j.jphotobiol.2015.05.012.Suche in Google Scholar PubMed

[62] P. Kesharwani, B. Gorain, S. Y. Low, S. A. Tan, E. C. Ling, Y. K. Lim, C. M. Chin, P. Y. Lee, C. M. Lee, C. H. Ooi, H. Choudhury, M. Pandey. Diabetes Res. Clin. Pract. 136, 52 (2018), https://doi.org/10.1016/j.diabres.2017.11.018.Suche in Google Scholar PubMed

[63] S. J. Li, J. Fan, J. Zhou, Y. T. Ren, C. Shen, G. W. Che. Ann. Thoracic Surg. 102(1), 328 (2016), https://doi.org/10.1016/j.athoracsur.2016.01.013.Suche in Google Scholar PubMed

[64] Y. I. Shen, H. Cho, A. E. Papa, J. A. Burke, X. Y. Chan, E. J. Duh, S. Gerecht. Biomaterials 102, 107 (2016), https://doi.org/10.1016/j.biomaterials.2016.06.009.Suche in Google Scholar PubMed

[65] C. P. Reis, A. J. Ribeiro, S. Houng, F. Veiga, R. J. Neufeld. Eur. J. Pharm. Sci. 30(5), 392 (2007), https://doi.org/10.1016/j.ejps.2006.12.007.Suche in Google Scholar PubMed

[66] S. C. Wei, L. Chang, C. C. Huang, H. T. Chang. Biomater. Sci. 7(11), 4482 (2019), https://doi.org/10.1039/c9bm00772e.Suche in Google Scholar PubMed

[67] S. M. Ghaseminezhad, S. A. Shojaosadati, R. L. Meyer. Colloids Surf. B Biointerfaces 163, 192 (2018), https://doi.org/10.1016/j.colsurfb.2017.12.035.Suche in Google Scholar PubMed

[68] L. Grassi, G. Batoni, L. Ostyn, P. Rigole, S. Van den Bossche, A. C. Rinaldi, G. Maisetta, S. Esin, T. Coenye, A. Crabbé. Front. Microbiol. 10, 198 (2019), https://doi.org/10.3389/fmicb.2019.00198.Suche in Google Scholar PubMed PubMed Central

[69] M. Di Giulio, R. Zappacosta, S. Di Lodovico, E. Di Campli, G. Siani, A. Fontana, L. Cellini. Antimicrob. Agents Chemother. 62(7), 10 (2018), https://doi.org/10.1128/aac.00547-18.Suche in Google Scholar

[70] E. N. Taylor, K. M. Kummer, N. G. Durmus, K. Leuba, K. M. Tarquinio, T. J. Webster. Small 8(19), 3016 (2012), https://doi.org/10.1002/smll.201200575.Suche in Google Scholar PubMed

[71] W. Yantasee, C. L. Warner, T. Sangvanich, R. S. Addleman, T. G. Carter, R. J. Wiacek, G. E. Fryxell, C. Timchalk, M. G. Warner. Environ. Sci. Technol. 41(14), 5114 (2007), https://doi.org/10.1021/es0705238.Suche in Google Scholar PubMed

[72] S. Kappally, A. Shirwaikar, A. Shirwaikar. Hygeia JD Med. 7(2), 34 (2015).Suche in Google Scholar

[73] A. Abdoli, R. Shahbsazi, G. Zoghi, P. Davoodian, S. Kheirandish, M. Azad, M. Kheirandish. Diabetes Metabol. Syndr. Clin. Res. Rev. 16(12), 102678 (2022), https://doi.org/10.1016/j.dsx.2022.102678.Suche in Google Scholar PubMed

[74] V. A. Aneesha, A. Qayoom, S. Anagha, S. A. Almas, V. K. Naresh, S. Kumawat, D. Kumar. J. Tissue Viability 31(3), 474 (2022), https://doi.org/10.1016/j.jtv.2022.04.009.Suche in Google Scholar PubMed

[75] W. Han, B. Zhou, K. Yang, X. Xiong, S. Luan, Y. Wang, H. Xu. Bioactive Mater. 5(4), 768 (2020), https://doi.org/10.1016/j.bioactmat.2020.05.008.Suche in Google Scholar PubMed PubMed Central

[76] N. Barraud, D. Schleheck, J. Klebensberger, J. S. Webb, D. J. Hassett, S. A. Rice, S. Kjelleberg. J. Bacteriol. 191(23), 7333 (2009), https://doi.org/10.1128/jb.00975-09.Suche in Google Scholar PubMed PubMed Central

[77] M. Møller-Kristensen, W. K. Ip, L. Shi, L. D. Gowda, M. R. Hamblin, S. Thiel, K. Takahashi. J. Immunol. 176(3), 1769 (2006), https://doi.org/10.4049/jimmunol.176.3.1769.Suche in Google Scholar PubMed PubMed Central

[78] J. Melrose. Bone Tissue Regen. Insights 7, BTRI.S38670 (2016), https://doi.org/10.4137/btri.s38670.Suche in Google Scholar

[79] L. Gao, Y. Liu, D. Kim, Y. Li, G. Hwang, P. C. Naha, D. P. Cormode, H. Koo. Biomaterials 101, 272 (2016), https://doi.org/10.1016/j.biomaterials.2016.05.051.Suche in Google Scholar PubMed PubMed Central

[80] M. U. Akbar, K. M. Zia, M. S. H. Akash, A. Nazir, M. Zuber, M. Ibrahim. Int. J. Biol. Macromol. 120, 2418 (2018), https://doi.org/10.1016/j.ijbiomac.2018.09.010.Suche in Google Scholar PubMed

[81] C. Gong, Q. Wu, Y. Wang, D. Zhang, F. Luo, X. Zhao, Z. Qian. Biomaterials 34(27), 6377 (2013), https://doi.org/10.1016/j.biomaterials.2013.05.005.Suche in Google Scholar PubMed

[82] M. Puccetti, A. Donnadio, M. Ricci, L. Latterini, G. Quaglia, D. Pietrella, A. Di Michele, V. Ambrogi. J. Funct. Biomater. 14(2), 84 (2023), https://doi.org/10.3390/jfb14020084.Suche in Google Scholar PubMed PubMed Central

[83] C. Li, E. J. Cornel, J. Du. ACS Appl. Polym. Mater. 3(5), 2218 (2021), https://doi.org/10.1021/acsapm.1c00003.Suche in Google Scholar

[84] T. Wang, Y. Li, E. J. Cornel, C. Li, J. Du. ACS Nano 15(5), 9027 (2021), https://doi.org/10.1021/acsnano.1c02102.Suche in Google Scholar PubMed

[85] X. Liu, Z. Wang, X. Feng, E. Bai, Y. Xiong, X. Zhu, B. Shen, Y. Duan, Y. Huang. Bioconjugate Chem. 31(5), 1425 (2020), https://doi.org/10.1021/acs.bioconjchem.0c00121.Suche in Google Scholar PubMed

[86] L. Colobatiu, A. Gavan, A. V. Potarniche, V. Rus, Z. Diaconeasa, A. Mocan, I. Tomuta, S. Mirel, M. Mihaiu. React. Funct. Polym. 145, 104369 (2019), https://doi.org/10.1016/j.reactfunctpolym.2019.104369.Suche in Google Scholar

[87] X. Deng, X. Li, W. Chen, T. Zhao, W. Huang, H. Qian. Med. Chem. Res. 26, 580 (2017), https://doi.org/10.1007/s00044-016-1777-6.Suche in Google Scholar

Published Online: 2024-05-14
Published in Print: 2024-10-28

© 2024 IUPAC & De Gruyter

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1117/html
Button zum nach oben scrollen