Home Evaluation of in vitro antioxidant activities, total phenolic and elemental contents of common herbs and spices (Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves) in South-West Nigeria
Article
Licensed
Unlicensed Requires Authentication

Evaluation of in vitro antioxidant activities, total phenolic and elemental contents of common herbs and spices (Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves) in South-West Nigeria

  • Bukunola Oluyemisi Adegbesan EMAIL logo , Esther Nkechi Ezima , Basit Opeyemi Hassan , Jeremiah Oluwasegun Kehinde , Aderinsola Ayoyemi Adewale , Ifabunmi Oduyemi Osonuga and Samuel Oluwadare Olalekan
Published/Copyright: May 8, 2024

Abstract

Natural remedies are being widely utilized in some disease’s conditions including cancer, diabetes, neurodegenerative diseases, atherosclerosis hypertension and other cardiovascular diseases. The therapeutic intervention of medicinal plants and spices cannot be overemphasized in the management and control of diseases but the exact modes of action of these herbs and plants have not been fully elucidated. This research work was designed to study the expression of selected elements, zinc (Zn), iron (Fe), copper (Cu), selenium (Se), lead (Pb) and cadmium (Cd); the phytochemical and the in vitro antioxidant properties of ethanolic extracts of Moringa oleifera leaves, Allium sativum (Garlic) and Momordica charantia (ejinrin) leaves for their potential involvement in the prevention and management of cardiovascular diseases and cancer through different chemical methods. In vitro antioxidant properties were assayed by investigating 2,2-diphenyl-2-picryl-hydrazyl (DPPH) free radicals scavenging potentials and Ferric Reducing Antioxidant Potential (FRAP); total phenolic content was determined by using Folin-Ciocalteu assay and the elemental contents of these extracts was investigated through the use of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). All tests were run in triplicates and analysed. Our results revealed that the ethanolic extracts of M. oleifera leaves, A. sativum (Garlic) and M. charantia (ejinrin) leaves possess significant antioxidant activities and express important and beneficial elements (in marginal and trace amounts) and phytochemicals. These results suggest that the medicinal attributes of these plants may be linked to the radical scavenging abilities, beneficial elements and phytochemicals expression of their ethanolic extracts which may likely be a good direction in the area of drug discovery and development.


Corresponding author: Bukunola Oluyemisi Adegbesan, Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun, Nigeria, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023.

Acknowledgments

The authors will like to appreciate Dr J. S Ashidi of the department of plant science, Olabisi Onabanjo University, Ogun State Nigeria for his guide and expertise on plant identification and extraction. The authors will also like to appreciate Prof. Ademuyiwa Oladipo of the department of Biochemistry, Federal University of Agriculture, Abeokuta (FUNAAB) for his support on the elemental analysis.

  1. Research funding: The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

References

[1] B. A. Rasool Hassan. Pharm. Anal. Acta 03(10), 2153–2435 (2012), https://doi.org/10.4172/2153-2435.1000e139.Search in Google Scholar

[2] A. Sofowora, E. Ogunbodede, A. Onayade. Afr. J. Tradit. Complement. Altern. Med. 10, 210 (2013), https://doi.org/10.4314/ajtcam.v10i5.2.Search in Google Scholar

[3] B. Patwardhan, D. Warude, P. Pushpangadan, N. Bhatt. Evid.-Based Complementary Altern. Med. 2, 465 (2005), https://doi.org/10.1093/ecam/neh140.Search in Google Scholar

[4] D. C. Hao. Chapter 1—genomics and evolution of medicinal plants. in Ranunculales Medicinal Plants, D.-C. Hao (Ed.), pp. 1–33, Academic Press (2019).10.1016/B978-0-12-814232-5.00001-0Search in Google Scholar

[5] S. P. Voravuthikunchai, T. Sririrak, S. Limsuwan, T. Supawita, T. Iida, T. Honda. J. Health Sci. 51, 590 (2005), https://doi.org/10.1248/jhs.51.590.Search in Google Scholar

[6] M. A. Hossain, K. A. S. AL-Raqmi, Z. H. AL-Mijizy, A. M. Weli, Q. Al-Riyami. Asian Pac. J. Trop. Biomed. 3, 705 (2013), https://doi.org/10.1016/S2221-1691(13)60142-2.Search in Google Scholar

[7] G. J. Soleas, E. P. Diamandis, D. M. Goldberg. J. Clin. Lab. Anal. 11, 287 (1997), https://doi.org/10.1002/(SICI)1098-2825(1997)11:5<287::AID-JCLA6>3.0.CO;2–4.10.1002/(SICI)1098-2825(1997)11:5<287::AID-JCLA6>3.0.CO;2-4Search in Google Scholar

[8] J. Singh, M. Singh, A. Jain, S. Bhardwaj, A. Singh, D. Singh, B. Nehru, S. Dubey. in An Introduction of Plant Nutrients and Foliar Fertilization: A Review. Precision farming: a new approach, pp. 252–320, Daya Publishing Company, New Delhi (2013).10.59317/9789390512850Search in Google Scholar

[9] K. D. Quintaes, R. W. Diez-Garcia. The importance of minerals in the human diet. in Handbook of Mineral Elements in Food, pp. 1–21, John Wiley & Sons, Ltd (2015).10.1002/9781118654316.ch1Search in Google Scholar

[10] K. Soetan, C. Olaiya, O. Oyewole. Afr. J. Food Sci. 4(5), 200–222 (2010).Search in Google Scholar

[11] F. Anwar, S. Latif, M. Ashraf, A.H. Gilani. Phytother. Res. 21(1), 17–25 (2007), https://doi.org/10.1002/ptr.2023.Search in Google Scholar

[12] V. Heuze, G. Tran, P. Hassoun, D. Bastianelli, F. Lesbas. Moringa (Moringa oleifera) | feedipedia (2016), http://www.feedipedia.org/node/124.Search in Google Scholar

[13] M. Daba. J. Earth Sci. Clim. Change 7, 366 (2016), https://doi.org/10.4172/2157-7617.1000366.Search in Google Scholar

[14] L. J. Fuglie. The Moringa tree, a local solution to malnutrition? – Moringanews. Yumpu.Com (n.d.), https://www.yumpu.com/en/document/read/20078058/the-Moringa-tree-a-local-solution-to-malnutrition-Moringanews (accessed Jan 26, 2023).Search in Google Scholar

[15] M. Mbikay. Front. Pharmacol 3, 24 (2012), https://doi.org/10.3389/fphar.2012.00024.Search in Google Scholar PubMed PubMed Central

[16] V Nadumane, S. Nair. J. Nat. Pharm. 2, 138 (2011), https://doi.org/10.4103/2229-5119.86260.Search in Google Scholar

[17] J. L. Rockwood, B. G. Anderson, D. Casamatta. Int. J. Phytother. Res. 3, 61 (2013).Search in Google Scholar

[18] K. Alam, S. Uddin, S. Md, M. Uddin. J. Med. Plants Stud. 4, 72 (2016).Search in Google Scholar

[19] R. Fritsch, N. Friesen. Evolution, domestication and taxonomy, in Allium Crop Science: Recent Advances, pp. 5–30, CABI Books, Wallingford, UK (2002).10.1079/9780851995106.0005Search in Google Scholar

[20] G. Gebreyohannes, M. Gebreyohannes. Int. J. Med. Med. Sci. 5, 401 (2013), https://doi.org/10.5897/IJMMS2013.0960.Search in Google Scholar

[21] J. Ansary, T. Y. Forbes-Hernández, E. Gil, D. Cianciosi, J. Zhang, M. Elexpuru-Zabaleta, J. Simal-Gandara, F. Giampieri, M. Battino. Antioxidants 9, 619 (2020), https://doi.org/10.3390/antiox9070619.Search in Google Scholar PubMed PubMed Central

[22] B. B. Petrovska, S. Cekovska. Phcog Rev. 4, 106 (2010), https://doi.org/10.4103/0973-7847.65321.Search in Google Scholar PubMed PubMed Central

[23] J. B. Minari, C. A. Okelola, N. C. Ugochukwu. J. Tradit. Med. Complement. Med. 8, 282 (2017), https://doi.org/10.1016/j.jtcme.2017.04.003.Search in Google Scholar PubMed PubMed Central

[24] J. Virdi, S. Sivakami, S. Shahani, A. C. Suthar, M. M. Banavalikar, M. K. Biyani. J. Ethnopharmacol. 88, 107 (2003), https://doi.org/10.1016/s0378-8741(03)00184-3.Search in Google Scholar PubMed

[25] A. M. L. Dans, M. V. C. Villarruz, C. A. Jimeno, M. A. U. Javelosa, J. Chua, R. Bautista, G. G. B. Velez. J. Clin. Epidemiol. 60, 554 (2007), https://doi.org/10.1016/j.jclinepi.2006.07.009.Search in Google Scholar PubMed

[26] S. Kumaravel, K. Alagusundaram. Orient. J. Chem. 30, 631 (2014), https://doi.org/10.13005/ojc/300231.Search in Google Scholar

[27] L. B. Harborne. Phenolic compounds. in Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, pp. 37–99 (1984).10.1007/978-94-009-5570-7_2Search in Google Scholar

[28] A. Sofowora. in Medicinal Plants and Traditional Medicine in Africa, pp. 191–289, Spectrum Books, Ibadan (1993).Search in Google Scholar

[29] L. L. Mensor, F. S. Menezes, G. G. Leitão, A. S. Reis, T. C. D. Santos, C. S. Coube, S. G. Leitão. Phytother. Res. 15, 127 (2001), https://doi.org/10.1002/ptr.687.Search in Google Scholar PubMed

[30] H. A. Oboh, I. P. Omoregie. Nig. J. Basic Appl. Sci. 19, 1 (2011), https://doi.org/10.4314/njbas.v19i1.69346.Search in Google Scholar

[31] V. L. Singleton, R. Orthofer, R. M. Lamuela-Raventós. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. in Methods in Enzymology, pp. 152–178, Elsevier, Vol. 299 (1999).10.1016/S0076-6879(99)99017-1Search in Google Scholar

[32] S. G. Jonathan, O. J. Olawuyi, D. A. Aina, S. O. Odeniyi, I. O. Adediji, A. Ikhedia. New York Sci. J. 5, 17 (2012).Search in Google Scholar

[33] M. Kaur, P. Ghinta, R. Gupta. Res. J. Biotechnol. 16, 134 (2021).10.25303/1610rjbt189197Search in Google Scholar

[34] T. Arify, S. Ezhilvalavan, A. Varum, A. Sundaresan, K. Manimaran. Int. J. Chem. Stud. 6, 1635 (2018).Search in Google Scholar

[35] F. Sharopov, A. Valiev, I. Gulmurodov, M. Sobeh, P. Satyal, M. Wink. Pharm. Chem. J. 52, 459 (2018), https://doi.org/10.1007/s11094-018-1839-9.Search in Google Scholar

[36] A. Kumar, R. Shukla, P. Singh, C. S. Prasad, N. K. Dubey. Innov. Food Sci. Emerg. Technol. 9, 575 (2008), https://doi.org/10.1016/j.ifset.2007.12.005.Search in Google Scholar

[37] W. F. Sule, I. O. Okonko, T. A. Joseph, M. O. Ojezele, J. C. Nwanze, J. A. Alli, O. G. Adewale. Res. J. Biol. Sci. 5, 275 (2010), https://doi.org/10.3923/rjbsci.2010.275.284.Search in Google Scholar

[38] R. Wang, M. Wang, J. Zhou, D. Wu, J. Ye, G. Sun, X. Sun. Front. Pharmacol 11, 570867 (2021), https://doi.org/10.3389/fphar.2020.570867.Search in Google Scholar PubMed PubMed Central

[39] A. F. S. Santos, A. C. C. Argolo, P. M. G. Paiva, L. C. B. B. Coelho. Phytother. Res. 26, 1366 (2012), https://doi.org/10.1002/ptr.4591.Search in Google Scholar PubMed

[40] M. Rahman, V. Fazlic, N. Saad. Int. Food Res. J. 2012, 589–591 (2012).Search in Google Scholar

[41] L. Xiaonan, C. F. Ross, J. R. Powers, D. E. Aston, B. A. Rasco. J. Agric. Food Chem. 59, 5215 (2011), https://doi.org/10.1021/jf201254f.Search in Google Scholar PubMed

[42] G. Leelaprakash, J. C. Rose, B. M. Gowtham, P. K. Javvaji, S. A. Prasad. Pharmacophore 2(4), 244–252 (2011).Search in Google Scholar

[43] S. O. Jimoh, L. A. Arowolo, K. A. Alabi. Int. J. Curr. Microbiol. Appl. Sci. 6, 4557 (2017), https://doi.org/10.20546/ijcmas.2017.607.476.Search in Google Scholar

[44] D. S. Kumar, K. V. Sharathnath, P. Yogeswaran, A. Harani, K. Sudhakar, P. Sudha, D. Banji. Int. J. Pharm. Sci. Rev. Res. 1, 95 (2010).Search in Google Scholar

[45] Z. Mousavi, P. Ziarati, M. Dehaghi, M. Qomi. Iran. J. Toxicol. 8(24), 1004–1010 (2014).Search in Google Scholar

Published Online: 2024-05-08
Published in Print: 2024-10-28

© 2024 IUPAC & De Gruyter

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1128/html
Scroll to top button